Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Hưng
Xem chi tiết
Lê Minh Hưng
18 tháng 5 2018 lúc 8:55

Giúp với

Lê Thu Hiền
Xem chi tiết
Vũ Thảo Anh
Xem chi tiết
 Nguyễn Kim Tường
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 12 2021 lúc 17:19

\(ĐK:x\ne\pm\dfrac{1}{4}\\ PT\Leftrightarrow-3\left(4x+1\right)+8+6x=2\left(4x-1\right)\\ \Leftrightarrow5-6x=8x-2\\ \Leftrightarrow14x=7\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

Uchiha Itachi
Xem chi tiết
Lê Thị Thục Hiền
17 tháng 5 2021 lúc 21:03

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

Lê Thị Thục Hiền
17 tháng 5 2021 lúc 21:27

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)

 

 

 


 

Yeutoanhoc
17 tháng 5 2021 lúc 20:19

`a)\sqrtx+\sqrt{2-x}=(3x^2-2x+3)/(x^2+1)`

`đk:0<=x<=2`

`pt<=>sqrtx-1+\sqrt{2-x}-1=(3x^2-2x+3)/(x^2+1)-2`

`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x^2-2x+1)/(x^2+1)`

`<=>(x-1)/(sqrtx+1)+(1-x)/(sqrt{2-x}+1)=(x-1)^2/(x^2+1)`

`<=>(x-1)((x-1)/(x^2+1)+1/(sqrt{2-x}+1)-1/(sqrtx+1))=0`

`<=>x-1=0<=>x=1`

Vậy `S={1}`

junghyeri
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2022 lúc 10:08

\(\Leftrightarrow\dfrac{\left(2x+3\right)\left(2x+7\right)-\left(2x+5\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x+7\right)}=\dfrac{4x^2+16x+7-6x^2-9x+9}{\left(2x+1\right)\left(2x+7\right)}\)

\(\Leftrightarrow-2x^2+7x+16=4x^2+20x+21-4x^2-12x-5\)

\(\Leftrightarrow-2x^2+7x+16=8x+16\)

\(\Leftrightarrow-2x^2-x=0\)

=>x(2x+1)=0

=>x=0(nhận) hoặc x=-1/2(loại)

Thuy Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2022 lúc 12:58

b: \(=\dfrac{x-1+x+1-3x}{\left(x+1\right)\left(x-1\right)}=\dfrac{-x}{\left(x+1\right)\left(x-1\right)}\)

c: \(=\dfrac{x^3+1}{x+1}+\dfrac{x^2+1}{x-1}\)

\(=x^2-x+1+\dfrac{x^2+1}{x-1}\)

\(=\dfrac{x^3-x^2-x^2+x+x-1+x^2+1}{\left(x-1\right)}\)

\(=\dfrac{x^3-x^2+2x}{x-1}\)

d: \(=\dfrac{2x+y}{x\left(2x-y\right)}-\dfrac{16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2+2y^2}{x\left(2x-y\right)\left(2x+y\right)}=\dfrac{-2\left(4x^2-y^2\right)}{x\left(2x-y\right)\left(2x+y\right)}=\dfrac{-2}{x}\)

H Phương Nguyên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2022 lúc 13:11

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

Không Biết Họ Hàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 22:23

\(=\left(4x^2-\dfrac{1}{2}\right)\cdot\left[\left(4x^2\right)^2+4x^2\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]\)

\(=\left(4x^2\right)^3-\left(\dfrac{1}{2}\right)^3=64x^6-\dfrac{1}{8}\)

Đức Anh Ramsay
Xem chi tiết
Minh Nhân
17 tháng 2 2021 lúc 13:03

\(a.\)

\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)

\(b.\)

\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)

Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:04

a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)

\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)

\(=\dfrac{4x+1}{4x-1}\)

b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)

\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{y-2x}{y+2x}\)