cho \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=2 (1) ; \(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)=2 (2)
c/m a+b+c= abc
Cho các số a,b,c>0 và thỏa mãn a+b+c=3. Tìm GTNN
a, \(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\)
b, \(P=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\)
c, \(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\)
Với cả 3 phần thì dấu "=" xảy ra tại a=b=c=1.
a) \(\dfrac{a}{1+b^2}=\dfrac{a\left(1+b^2\right)}{1+b^2}-\dfrac{ab^2}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)
(Cosi) \(\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)
Tương tự : \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2};\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\)
\(\Rightarrow P\ge\left(a+b+c\right)-\dfrac{ab+bc+ca}{2}\ge\left(CS\right)\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{6}=3-\dfrac{3^2}{6}=\dfrac{3}{2}\)
b) \(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge\left(CS\right)1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
Tương tự : \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)
\(\Rightarrow P\ge3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\)
c)\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\left(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\right)+\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)
\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)
\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
cho a,b,c>0, CMR:
\(\left(a+b+\dfrac{1}{4}\right)^2+\left(b+c+\dfrac{1}{4}\right)^2+\left(c+a+\dfrac{1}{4}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)
\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)
Thật vậy, ta có:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)
Vậy ta cần chứng minh:
\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c
Cho biết: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\); \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\). CMR: a+b+c=abc
Theo đề ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\)
=>\(2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
=>\(\dfrac{c+a+b}{abc}=1\Rightarrow a+b+c=abc\)
=> Đpcm
có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =2
⇒\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)2 = 4
⇔\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4.
⇒2 + \(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4 (do \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)=2)
⇔\(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =2
⇔ \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) =1
⇔\(abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) =abc
⇔a +b +c =abc(đpcm)
cho a,b,c>0
CMR:
1) \(a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)
2) \(\left(a+b+\dfrac{1}{2}\right)^2+\left(b+c+\dfrac{1}{2}\right)^2+\left(c+a+\dfrac{1}{2}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
1) Áp dụng BĐT Cô si
ta có
\(\left(\sqrt{a+b}-\dfrac{1}{2}\right)^2\ge0\forall a,b\inĐK\)
\(\Leftrightarrow a+b-2\sqrt{a+b}.\dfrac{1}{2}+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)
vậy ĐPCM
Bài 2
Áp dụng bđt Cauchy ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{\sqrt{ab}}{2}\)
Thiết lập tương tự và thu lại ta có:
\(\Rightarrow VP\le4\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)
Áp dụng bđt Cauchy ta có \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\dfrac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\dfrac{1}{2}\right)^2\ge2.2\sqrt{ab}.\dfrac{1}{2}=2\sqrt{ab}\)
Thiết lập tương tự và thu lại ta có:
\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow VT\ge VP\)
\(\Rightarrowđpcm\)
Cho biết
\(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)=2
\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=2
Chứng minh a+b+c=abc
Ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=1a^2+1b^2+1c^2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(=2^2=2=2+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
\(=\dfrac{c}{abc}+\dfrac{a}{abc}+\dfrac{b}{abc}=\dfrac{abc}{abc}\)
\(=a+b+c\)
\(=abc\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\\ \Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\\ \Rightarrow\dfrac{a+b+c}{abc}=1\\ \Rightarrow a+b+c=abc\left(dpcm\right)\)
1, Cho x; y; z ≠0 và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)+ \(\dfrac{1}{z}\)=\(\dfrac{2}{2x+y+2z}\). Cmr: (2x+y)(y+2z)(z+x)= 0
2, Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Cmr: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Gấp ạ, ai giúp mình với!!!!
2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)
1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).
CM:....
Đặt 2x = x', 2z = z'.
Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)
\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)
\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)
Cho a, b, c > 0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\) .
Tìm MAX : A= \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\)
Cho a, b ,c >0. CM: \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
* Áp dụng BĐT \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ vào bài toán có :
\(\dfrac{1}{4}\cdot\left(\dfrac{4}{a+b}\right)\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\dfrac{1}{4}\left(\dfrac{4}{b+c}\right)\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{1}{4}\left(\dfrac{4}{c+a}\right)\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế với vế các BĐT có :
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)