Tìm x biết:
\(\dfrac{x}{-8}\)\(=\dfrac{-15}{10}\)
Vậy x =???
tìm x biết
\(\dfrac{x-2023}{6}\)\(+\dfrac{x-2023}{10}\)\(+\dfrac{x-2023}{15}\)\(+\dfrac{x-2023}{21}\)=\(\dfrac{8}{21}\)
\(\dfrac{x-2023}{6}+\dfrac{x-2023}{10}+\dfrac{x-2023}{15}+\dfrac{x-2023}{21}=\dfrac{8}{21}\)
\(\left(x-2023\right)\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\left(x-2023\right).\dfrac{8}{21}=\dfrac{8}{21}\)
\(x-2023=1\)
\(x=2024\)
Vậy..............
\(...\Rightarrow\left(x-2023\right)\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right)\left(\dfrac{35+21+14+1}{210}\right)=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right).\dfrac{71}{210}=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right).\dfrac{71}{210}=\dfrac{8}{21}.\dfrac{210}{71}=\dfrac{80}{71}\)
\(\Rightarrow x-2023=\dfrac{80}{71}\Rightarrow x=\dfrac{80}{71}+2023=\dfrac{143713}{71}\)
\(\dfrac{x-2023}{6}+\dfrac{x-2023}{10}+\dfrac{x-2023}{15}+\dfrac{x-2023}{21}=\dfrac{8}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow\left(x-2023\right).\left(\dfrac{1}{3}-\dfrac{1}{7}\right)=\dfrac{4}{21}\)
\(\Leftrightarrow x-2023=1\Leftrightarrow x=2024\)
tìm x :
a, x . \(\dfrac{-5}{8}\) = \(\dfrac{15}{32}\) b, \(\dfrac{3}{10}\) : x =\(\dfrac{-9}{20}\)
c, \(\dfrac{-1}{4}\) x + \(\dfrac{4}{5}\) =\(\dfrac{3}{4}\) d, \(\dfrac{-7}{8}\) + \(\dfrac{2}{3}\) :x = \(\dfrac{3}{5}\) . \(\dfrac{-5}{12}\)
\(a,x.\dfrac{-5}{8}=\dfrac{15}{32}\)
\(\Leftrightarrow x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(\Leftrightarrow x=\dfrac{15}{32}.\dfrac{-8}{5}\)
\(\Leftrightarrow x=-\dfrac{3}{4}\)
\(b,\dfrac{3}{10}:x=-\dfrac{9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}.\dfrac{-20}{9}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
\(c,-\dfrac{1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow-\dfrac{1}{4}x=-\dfrac{1}{20}\)
\(\Leftrightarrow x=-\dfrac{1}{20}\times\left(-4\right)\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
\(d,-\dfrac{7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}.\dfrac{-5}{12}\)
\(\Leftrightarrow-\dfrac{7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{16}{15}\)
a, \(x\cdot\dfrac{-5}{8}=\dfrac{15}{32}\)
\(x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(x=\dfrac{-3}{4}\)
b, \(\dfrac{3}{10}:x=\dfrac{-9}{20}\)
\(x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(x=-\dfrac{2}{3}\)
c, \(\dfrac{-1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\dfrac{-1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\dfrac{-1}{4}x=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}:\dfrac{-1}{4}\)
\(x=\dfrac{1}{5}\)
d, \(\dfrac{-7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}\cdot\dfrac{-5}{12}\)
\(\dfrac{-7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{-7}{8}\)
\(\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(x=\dfrac{16}{15}\)
#YVA6
\(a,x.\dfrac{-5}{8}=\dfrac{15}{32} \)
\(x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(x=\dfrac{-3}{4}\)
\(b,\dfrac{3}{10}:x=\dfrac{-9}{20}\)
\(x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(x=\dfrac{-2}{3}\)
\(c,\dfrac{-1}{4}.x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\dfrac{-1}{4}.x=\dfrac{-1}{20}\)
\(x=\dfrac{-1}{20}:\dfrac{-1}{4}\)
\(x=\dfrac{1}{5}\)
\(d,\dfrac{-7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}.\dfrac{-5}{12}\)
\(\dfrac{-7}{8}+\dfrac{2}{3}:x=\dfrac{-1}{4}\)
\(\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(x=\dfrac{16}{15}\)
\(#yH\)
\(#NBaoNgoc\)
tìm x biết
a , \(\dfrac{-3}{10}\)-(\(\dfrac{-1}{5}\) +x)=\(\dfrac{-3}{2}\)
b, -(-x+ \(\dfrac{3}{4}\))- \(\dfrac{12}{8}\).- \(\dfrac{32}{15}\)=- \(\dfrac{-1}{2}\)
c, \(\dfrac{x-3}{x+5}\)=\(\dfrac{4}{3}\)
Giải:
a)-3/10-(-1/5)+x)=-3/2
-1/5+x =-3/10-(-3/2)
-1/5+x =6/5
x =6/5-(-1/5)
x =7/5
b)-(-x+3/4)-12/8.(-32/15)=-(-1/2)
x-3/4+16/5 =1/2
x-3/4 =1/2-16/5
x =-27/10
x =-27/10+3/4
x =-39/20
c)x-3/x+5=4/3
=>(x-3).3=4.(x+5)
3x-9 =4x+20
3x-4x =20+9
-1x =29
x =-29
Câu b cậu nên tính lại cho kĩ nhé, ấn máy tính dễ nhầm lắm đấy!
Mk phải ấn: -(39/20+3/4)-12/8.-32/15=1/2
Vì x là số âm mà đằng trước x là dấu ''-'' nên -(-39/20)=39/20 ; -(-1/2)=1/2
Chúc bạn học tốt!
tìm x biết : \(\dfrac{34-x}{x+12}\)=\(\dfrac{8}{15}\)
\(\dfrac{34-x}{x+12}=\dfrac{8}{15}\\ \Rightarrow15.\left(34-x\right)=8.\left(x+12\right)\\ \Rightarrow510-15x=8x+96\\ \Rightarrow8x+15x=510-96\\ \Rightarrow23x=414\\ \Rightarrow x=18\)
Vậy \(x=18\)
Tìm x biết: \(\dfrac{x+8}{12}+\dfrac{x+9}{11}+\dfrac{x+10}{10}+3=0\)
\(\dfrac{x+8}{12}+\dfrac{x+9}{11}+\dfrac{x+10}{10}+3=0\\ \Leftrightarrow\dfrac{x+8}{12}+1+\dfrac{x+9}{11}+1+\dfrac{x+10}{10}+1=0\\ \Leftrightarrow\dfrac{x+20}{12}+\dfrac{x+20}{11}+\dfrac{x+20}{10}=0\\ \Leftrightarrow\left(x+20\right)\left(\dfrac{1}{12}+\dfrac{1}{11}+\dfrac{1}{10}\right)=0\\ \Leftrightarrow x+20=0\Leftrightarrow x=-20\\ KL:...\)
`<=>((x+8)/12+1)+((x+9)/11+1)+((x+10)/10+1)=0`
`<=>(x+20)/12+(x+20)/11+(x+20)/10=0`
`<=>(x+20)(1/12+1/11+1/10)=0`
Vì `1/12+1/11+1/10 ≠ 0`
`=>x+20=0`
`=>x=0-20`
`=>x=-20`
B1 : Tìm x,y
a) \(\dfrac{x}{-15}=\dfrac{60}{x}\)
b)\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)
c)\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
d) \(\dfrac{x}{2}=\dfrac{y}{5}=xy=10\)
Giúp tui đi :< Tui tick
d: Đặt x/2=y/5=k
=>x=2k; y=5k
Ta có: xy=10
nên k2=1
Trường hợp 1: k=1
=>x=2; y=5
Trường hợp 2: k=-1
=>x=-2; y=-5
Tìm x, biết
\(\left|x\right|-\dfrac{5}{6}.x=\dfrac{4}{9}.\dfrac{15}{8}\)
\(TH1:x\ge0\)
\(\Rightarrow x\left(1-\dfrac{5}{6}\right)=\dfrac{4}{9}.\dfrac{15}{8}\)
\(\Rightarrow x=\dfrac{\dfrac{4}{9}.\dfrac{15}{8}}{1-\dfrac{5}{6}}=5\left(TM\right)\)
\(TH2:x< 0\)
\(\Rightarrow x\left(-1-\dfrac{5}{6}\right)=\dfrac{4}{9}.\dfrac{15}{8}\)
\(\Rightarrow x=\dfrac{\dfrac{4}{9}.\dfrac{15}{8}}{-1-\dfrac{5}{6}}=-\dfrac{5}{11}\left(TM\right)\)
Vậy ...
Giải:
\(\left|x\right|-\dfrac{5}{6}.x=\dfrac{4}{9}.\dfrac{15}{8}\)
\(TH1:x\ge0\)
\(\left|x\right|-\dfrac{5}{6}.x=\dfrac{4}{9}.\dfrac{15}{8}\)
\(x-\dfrac{5}{6}.x=\dfrac{5}{6}\)
\(x.\left(1-\dfrac{5}{6}\right)=\dfrac{5}{6}\)
\(x.\dfrac{1}{6}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}:\dfrac{1}{6}\)
\(x=5\)
\(TH2:x\le0\)
\(\left|x\right|-\dfrac{5}{6}.x=\dfrac{4}{9}.\dfrac{15}{8}\)
\(-x-\dfrac{5}{6}.x=\dfrac{5}{6}\)
\(x.\left(-1-\dfrac{5}{6}\right)=\dfrac{5}{6}\)
\(x.\dfrac{-11}{6}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}:\dfrac{-11}{6}\)
\(x=\dfrac{-5}{11}\)
Vậy \(x\in\left\{\dfrac{-5}{11};5\right\}\)
Tính số tự nhiên x và y, với x < y<10 biết : \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)= \(\dfrac{8}{15}\)
Số tự nhiên bé hơn 10 là: 1,2,3,4,5,6,7,8,9
Ta thấy mẫu số là 15 nên x nhân y = 15
Suy ra 15 không chia được cho 2,4,6,7,8,9 bởi vì khi chia ta sẽ được thương là một số thập phân. Nên ta loại.
Còn lại số 1,3,5. Nếu y hoặc x là 1 thì số còn lại sẽ là 15 nhưng 15 <10 . Loại
Còn số 3,5 ta thấy 15 = 3 nhân 5 và x<y .
Nên x=3 y=5
<3 nhớ cho mik điểm zới nhe...
Tìm x biết:
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{x\left(2x+1\right)}=\dfrac{1}{10},\left(x\inℕ^∗\right)\)
Giải chi tiết giúp mik nha.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
Em giải như XYZ olm em nhé
Sau đó em thêm vào lập luận sau:
\(x\) = \(\dfrac{11}{18}\)
Vì \(\in\) N*
Vậy \(x\in\) \(\varnothing\)