Violympic toán 6

Nguyễn Lê Phước Thịnh
Thiếu tướng -
20 giờ trước (22:14)

Sửa đề: \(C=1+3^1+3^2+...+3^{100}\)

b) Ta có: \(C=1+3^1+3^2+...+3^{100}\)

\(\Leftrightarrow3\cdot C=3+3^2+...+3^{101}\)

\(\Leftrightarrow C-3\cdot C=1+3+3^2+...+3^{100}-3-3^2-...-3^{100}-3^{101}\)

\(\Leftrightarrow-2\cdot C=1-3^{101}\)

hay \(C=\dfrac{3^{101}-1}{2}\)

Bình luận (0)
Vũ Khánh Ly
7 giờ trước (11:10)

b) Ta có: C=1+31+32+...+3100C=1+31+32+...+3100

⇔3⋅C=3+32+...+3101⇔3⋅C=3+32+...+3101

⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101

⇔−2⋅C=1−3101

Bình luận (0)
EM KHINH LINH TỬ MỘC TRÀ
Tân binh -
21 giờ trước (20:35)

sao bạn đó toàn câu khó vậy mik ko làm dc đâu

Bình luận (0)
Trí Hải
21 giờ trước (20:55)

c1: 30 phút vì hỏi cả 3 viên

Bình luận (0)
Anh Thư Trần
21 giờ trước (20:55)

đề bài là gì v bn

Bình luận (0)
EM KHINH LINH TỬ MỘC TRÀ
Tân binh -
Hôm kia lúc 20:54

nhiều điểm GP

Bình luận (2)
Tân binhGP: 0 0

Level 0

Hạ sĩGP: 10 0

Level 1

Trung sĩGP: 20 0

Level 2

Thượng sĩGP: 40 0

Level 3

Thiếu úyGP: 60 0

Level 4

Trung úyGP: 100 0

Level 5

Thượng úyGP: 150 0

Level 6

Đại úyGP: 200 0

Level 7

Thiếu táGP: 300 0

Level 8

Trung táGP: 500 0

Level 9

Thượng táGP: 700 0

Level 10

Đại táGP: 1000 0

Level 11

Thiếu tướngGP: 1500 0

Level 12

Trung tướngGP: 2500 0

Level 13

Thượng tướngGP: 4000 0

Level 14

Đại tướngGP: 6000 0

Level 15

Bình luận (3)
Akai Haruma
Thiếu tướng -
Hôm kia lúc 2:12

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).

Do đó $p=3k+2$.

Khi đó:

$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)

Bình luận (0)
Nguyễn Thị Thuỳ Linh
Đại tá -
Hôm kia lúc 20:22

Giả sử:,

+) nn chia 3 dư 1 thì n2 cũng chia 3 dư 1, khi đó n2−1 chia 3 dư 0 nên không là số nguyên tố.

+) nn chia 3 dư 2 thì n^2 cũng chia 3 dư 1, khi đó n2-1 chia 3 dư 0 nên không là số nguyên tố

Vậy ta có đpcm :)

Bình luận (0)
Nguyễn Lê Phước Thịnh
Thiếu tướng -
Hôm kia lúc 19:18

a) Trường hợp 1: P=3

\(\Leftrightarrow P^2+44=3^2+44=53\) là số nguyên tố

Trường hợp 2: P>3 

\(\Leftrightarrow\)P=3k+1 hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+1\right)^2+44=9k^2+6k+1+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+2k+15\right)⋮3\)(loại)

Với P=3k+2(\(k\in N\))

\(\Leftrightarrow P^2+44=\left(3k+2\right)^2+44=9k^2+12k+4+44\)

\(\Leftrightarrow P^2+44=3\left(3k^2+4k+16\right)⋮3\)(loại)

Vậy: P=3

b) Với P=3 thì P+10=13 và P+14=17 đều là số nguyên tố

Với P>3 thì \(P=3k+1\) hoặc P=3k+2(\(k\in N\))

Với P=3k+1(\(k\in N\)) thì P+14=3k+1+14=3(k+5) không là số nguyên tố

=> Loại

Với P=3k+2(\(k\in N\)) thì P+10=3k+2+10=3(k+4) không là số nguyên tố

=> Loại

Vậy: P=3

Bình luận (0)
Nguyễn Lê Phước Thịnh
Thiếu tướng -
Hôm kia lúc 14:15

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

Bình luận (1)
Trương Huy Hoàng
Trung úy -
24 tháng 1 lúc 20:22

xy + 2x - 3y = 9

\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3

\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3

\(\Leftrightarrow\) (2 + y)(x - 3) = 3

Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:

     x - 3         3          1         -1        -3
    2 + y         1          3        -3        -1
        x         6(TM)          4(TM)        2(TM)        0(TM)
        y        -1(TM)          1(TM)       -5(TM)       -3(TM)

Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}

Chúc bn học tốt!

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN