\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2010}\right)\)
\(=\left(\dfrac{2-1}{2}\right)\left(\dfrac{3-1}{3}\right)\left(\dfrac{4-1}{4}\right)...\left(\dfrac{2010-1}{2010}\right)\)
\(=\dfrac{1.2.3...2009}{2.3.4...2010}\)
\(=\dfrac{1}{2010}\)
\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\dots\left(1-\dfrac{1}{2009}\right)\cdot\left(1-\dfrac{1}{2010}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\cdot\cdot\dfrac{2008}{2009}\cdot\dfrac{2009}{2010}\)
\(=\dfrac{1\cdot2\cdot3\dots2008\cdot2009}{2\cdot3\cdot4\dots2009\cdot2010}\)
\(=\dfrac{1}{2010}\)