Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
James Pham
Xem chi tiết
Trần Ái Linh
2 tháng 8 2021 lúc 20:16

`\sqrt(((2-\sqrt5)^2)/8)`

`= (\sqrt((2-\sqrt5)^2))/(\sqrt8)`

`= (|2-\sqrt5|)/(2\sqrt2)`

`=(\sqrt5-2)/(2\sqrt2)`

`=(\sqrt10-2\sqrt2)/4`

.

`7/(3\sqrt14) = (\sqrt7 .\sqrt7)/(3.\sqrt7 .\sqrt2)`

`=(\sqrt7)/(3\sqrt2)`

`=(\sqrt14)/(3.2)`

`=(\sqrt14)/6`

Bùi Võ Đức Trọng
2 tháng 8 2021 lúc 20:16

\(\sqrt{\dfrac{\left(2−\sqrt{5}\right)^2}{8}}\)\(\dfrac{\sqrt{5}-2}{2\sqrt{2}}\)

\(\dfrac{7}{3\sqrt{14}}\) = \(\dfrac{\sqrt{7}}{3\sqrt{2}}\)

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:19

\(\sqrt{\dfrac{\left(2-\sqrt{5}\right)^2}{8}}=\dfrac{\sqrt{5}-2}{2\sqrt{2}}=\dfrac{\sqrt{10}-2\sqrt{2}}{4}\)

\(\dfrac{7}{3\sqrt{14}}=\dfrac{7\sqrt{14}}{42}=\dfrac{\sqrt{14}}{6}\)

32_nguyễn_công_lộc
Xem chi tiết
Hquynh
8 tháng 1 2023 lúc 19:28

\(=\left(3\sqrt{2}-2\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =\left(\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =2+2\sqrt{7}-\sqrt{7}\\ =2+\sqrt{7}\)

Giúp mik với mấy bn ơi C...
Xem chi tiết
An Thy
11 tháng 7 2021 lúc 16:37

\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+2\sqrt{7}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{1}{\sqrt{2}}\)

Dưa Hấu
11 tháng 7 2021 lúc 16:38

undefined

Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 23:28

\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)

Nguyễn Duy Khang
Xem chi tiết
2611
24 tháng 9 2023 lúc 16:49

`a)(\sqrt{14}-3\sqrt{2})^2+6\sqrt{28}`

`=14-12\sqrt{7}+18+12\sqrt{7}=32`

`b)2\sqrt{20}-3\sqrt{20}+\sqrt{125}`

`=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}`

`=3\sqrt{5}`.

HT.Phong (9A5)
24 tháng 9 2023 lúc 16:49

a) \(\left(\sqrt{14}-3\sqrt{2}\right)^2-6\sqrt{28}\)

\(=\left(\sqrt{14}\right)^2-2\cdot\sqrt{14}\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2+6\sqrt{28}\)

\(=14-6\sqrt{28}+18+6\sqrt{28}\)

\(=14+18\)

\(=32\)

b) \(2\sqrt{20}-3\sqrt{20}+\sqrt{125}\)

\(=2\cdot2\sqrt{5}-3\cdot2\sqrt{5}+5\sqrt{5}\)

\(=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}\)

\(=3\sqrt{5}\)

Hatsune Miku
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
30 tháng 8 2018 lúc 11:36

a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{1}{\sqrt{2}}\)

b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Nguyen Keo Do
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
YangSu
18 tháng 6 2023 lúc 15:02

\(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{2^2-2.2.\sqrt{3}+\sqrt{3^2}}+\sqrt{3^2+2.3.\sqrt{3}+\sqrt{3^2}}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=2-\sqrt{3}+3+\sqrt{3}\)

\(=5\)

vi lê
Xem chi tiết
Nguyễn Trọng Chiến
15 tháng 3 2021 lúc 19:57

\(\Rightarrow P=4-2+2=4\)

ánh Phùng
15 tháng 3 2021 lúc 19:59

P=\(\sqrt{16}-\sqrt[3]{8}+\dfrac{\sqrt{12}}{\sqrt{3}}\)⇔ P= 4-2+\(\sqrt{\dfrac{12}{3}}\)

➜ P= 4-2+2 = 4

Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 21:37

\(P=\sqrt{16}-\sqrt[3]{8}+\dfrac{\sqrt{12}}{\sqrt{3}}\)

\(=4-2+2\)

=4

Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:28

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

Oriana.su
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 22:25

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)