Bỏ dấu giá trị tuyệt đối: a.|2a| với a≥0 b.|4a| với a7 d.|-12a| với a≥0 e.|a-1| với a≥1 f.|a-7| với a>7 g.|2-a| với a
a: =2a
b: =4a
d: =-(-12a)=12a
e: =a-1
f: =a-7
a: \(=\left(\dfrac{1}{3}\sqrt{6}+\dfrac{5}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\sqrt{6}\)
\(=\left(2\sqrt{6}-2\sqrt{6}\right)\cdot\sqrt{6}\)
=0
b: \(=\left(\dfrac{1}{2}\sqrt{3}-\sqrt{3}+5\cdot\dfrac{2\sqrt{3}}{3}\right)\cdot2\sqrt{3}\)
\(=\dfrac{17}{6}\sqrt{3}\cdot2\sqrt{3}=17\)
c: \(=\dfrac{\left(\dfrac{1}{7}\sqrt{7}-\dfrac{4}{7}\sqrt{7}+\sqrt{7}\right)}{\sqrt{7}}\)
=1/4-4/7+1
=1-3/7=4/7
i.
\(=\sqrt{\dfrac{\left(x-2\right)\left(x-2\right)}{x-2}}=\sqrt{\dfrac{x-2}{x-2}}=\sqrt{1}=1\)
j.
\(=1-\sqrt{\dfrac{\left(x-3\right)\left(x-3\right)}{x-3}}=1-\sqrt{\dfrac{x-3}{x-3}}=1-\sqrt{1}=1-1=0\)
k.
\(=1+\dfrac{x-1}{\sqrt{\left(x-1\right)^2}}=1+\dfrac{x-1}{x-1}=1+1=2\)
I.
\(=x-3-\dfrac{\sqrt{\left(x-3\right)^2}}{x-3}=x-3-\dfrac{x-3}{x-3}=x-3-1=x-4\)
i) \(\dfrac{\sqrt{\left(x-2\right)^2}}{x-2}=\dfrac{\left|x-2\right|}{x-2}=\dfrac{x-2}{x-2}=1\)
j) \(1-\dfrac{\sqrt{x^2-6x+9}}{x-3}\\ =1-\dfrac{\sqrt{\left(x-3\right)^2}}{x-3}\\ =1-\dfrac{\left|x-3\right|}{x-3}\\ =1-\left(-1\right)=2\)
k) \(1-\dfrac{1-x}{\sqrt{x^2-2x+1}}\\ =1-\dfrac{1-x}{\sqrt{\left(x-1\right)^1}}\\ =1-\dfrac{1-x}{\left|x-1\right|}\\ =1-1=0\)
l) \(\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{x^2-6x+9}}{x-3}\\ =\left|x-3\right|-\dfrac{\left|x-3\right|}{x-3}\\ =x-3-1=x-4\)
m) \(x-y-\sqrt{x^2-2xy+y^2}=x-y-\sqrt{\left(x-y\right)^2}\\ =x-y-\left|x-y\right|=x-y-x-y=-2y\)
f: \(\Leftrightarrow\sqrt{x}=3+\dfrac{1}{3}=\dfrac{10}{3}\)
hay x=100/9
g: \(\Leftrightarrow\sqrt{3x-1}=17\)
=>3x-1=289
=>3x=290
hay x=290/3
h: =>|3x-1|=18
=>3x-1=18 hoặc 3x-1=-18
=>3x=19 hoặc 3x=-17
=>x=19/3 hoặc x=-17/3
Bài 4:
a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=2\\x^2+4=x^2-4x+4\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
b: \(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(3-19x-x+5\right)\left(3-19x+x-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(-20x+8\right)\left(-18x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{1}{9}\right\}\)
c: \(\Leftrightarrow\sqrt{x^2-9}+\left|x-3\right|=0\)
=>x-3=0
hay x=3
\(d;pt\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+2.4\sqrt{2x-3}+16}=5\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\Leftrightarrow2\sqrt{2x-3}+1+4=5\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\dfrac{3}{2}\)
\(\)
2B:
a: \(=3-2\sqrt{2}+2\sqrt{2}=3\)
b: \(=\sqrt{10}-3+4-\sqrt{10}=1\)
a, Để biểu thức có nghĩa khi \(-5x-10\ge0\Leftrightarrow-5x\ge10\Leftrightarrow x\le-2\)
b, Để biểu thức có nghĩa khi \(x^2-2x+1\ge0\Leftrightarrow\left(x-1\right)^2\ge0\)( luôn đúng )
Vậy x thuộc số thực
c, Để biểu thức có nghĩa khi \(2x^2+4x+5=2\left(x^2+2x+1-1\right)+5\)
\(=2\left(x+1\right)^2+3>0\)( luôn đúng ) Vậy x thuộc số thực
a: ĐKXĐ: \(x+\left|x-2\right|>=0\)
\(\Leftrightarrow x>=0\)
b: \(A=\sqrt{x+\left|x-2\right|}\)
Trường hợp 1: x>=2
\(A=\sqrt{x+x-2}=\sqrt{2x-2}\)
Trườg hợp 2: 0<=x<2
\(A=\sqrt{x-x+2}=\sqrt{2}\)
`x-2\sqrt{x-1}=16` `ĐK: x >= 1`
`<=>x-1-2\sqrt{x-1}-15=0`
Đặt `\sqrt{x-1}=t (t >= 0)` khi đó ta có ptr:
`t^2-2t-15=0`
`<=>t^2-5t+3t-15=0`
`<=>(t-5)(t+3)=0`
`<=>` $\left[\begin{matrix} t=5 (t/m)\\ t=-3(ko t/m)\end{matrix}\right.$
`@t=5=>\sqrt{x-1}=5<=>x-1=25<=>x=26` (t/m)
Vậy `S={26}`