Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Tấn
Xem chi tiết
Phạm Lan Hương
22 tháng 2 2020 lúc 23:37

sửa đề 100/y -100/x=1

\(\left\{{}\begin{matrix}\frac{100}{y}-\frac{100}{x}=1\\x-y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{xy}-\frac{y}{xy}=\frac{1}{100}\\x=10+y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{10+y}{y\left(10+y\right)}-\frac{y}{y\left(y+10\right)}=\frac{1}{100}\\x=10+y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{10}{y^2+10y}=\frac{1}{100}\\x=10+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2+10y-1000=0\\x=10+y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=-5-5\sqrt{41}\\y=-5+5\sqrt{41}\end{matrix}\right.\\x=10+y\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-5+5\sqrt[]{41}\\x=5+5\sqrt{41}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-5-5\sqrt{41}\\x=10-5\sqrt{41}\end{matrix}\right.\end{matrix}\right.\)

vậy...

Khách vãng lai đã xóa
Đào Văn Nhựt
Xem chi tiết
Thắng Nguyễn
27 tháng 5 2016 lúc 9:11

a cái này là hệ của bài trâu bò j đó đây mà :D

Thắng Nguyễn
27 tháng 5 2016 lúc 9:12

X+Y+Z = 100

5X+3Y+1/3Z = 100 (1)

X+Y+Z+5X+3Y+1/3Z = 0

2/3Z = 4X+2Y

Z = 6X+3Y đưa vào (1)

5X+3Y +1/3 (6X+3Y) = 100

7X +4Y = 100

4Y = 100 – 7X Vì Y là số nguyên dương => 100 -7X phải chia chẵn cho 4.

100 chia chẵn cho 4 => 7X phải chia chẵn cho 4.

7 không chia chẵn cho 4, vậy X phải là số nguyên dương và chia chẵn cho 4.

Nếu:

X = 0 => Y = 25; Z = 75

X = 4 => Y = 18; Z = 78

X = 8 => Y = 11; Z = 81

X = 12 => Y = 4; Z = 84

Cô Hoàng Huyền
27 tháng 5 2016 lúc 9:33

Ta có \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}\Rightarrow\hept{\begin{cases}z=100-x-y\\5x+3y+\frac{100-x-y}{3}=100\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}z=100-x-y\\\frac{14x}{3}+\frac{8y}{3}=\frac{200}{3}\end{cases}\Rightarrow\hept{\begin{cases}z=100-x-y\\7x+4y=100\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{100-4y}{7}\\z=\frac{600-3y}{7}\end{cases}}}\)

Vậy phương trình có nghiệm dạng \(\left(\frac{100-4t}{7};t;\frac{600-3t}{7}\right)\) với \(t\in R\)

Tạ Quang Huy
Xem chi tiết
Master Ender
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
11 tháng 11 2018 lúc 22:06

Đặt \(\frac{1}{x+3}=a;\frac{1}{y-2}=b\)

\(\Leftrightarrow\hept{\begin{cases}5a+9b=100\\3a-7b=308\end{cases}}\)

P/s giải ra thay vào là được

Master Ender
11 tháng 11 2018 lúc 22:18

bạn làm ơn giải lốt hộ mình vs

Incursion_03
11 tháng 11 2018 lúc 22:39

(Hình như bn ghi sai đề : y+2 phải là y-2 chứ nhỉ ?!?!? )

giải tiếp bài bạn ๖ACE✪Hoàngミ★Việtツ và thêm ĐKXĐ : \(x\ne-3;y\ne2\)

Hệ \(\hept{\begin{cases}5a+9b=100\\3a-7b=308\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}15a+27b=300\\15a-35b=1540\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5a+9b=100\\\left(15a-35b\right)-\left(15a+27b\right)=1540-300\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5a+9b=100\\-62b=1240\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5a+9b=100\\b=-20\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=56\\b=-20\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+3}=56\\\frac{1}{y-2}=-20\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3=\frac{1}{56}\\y-2=\frac{-1}{20}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{167}{56}\\y=\frac{39}{20}\end{cases}}}\)(T/m ĐKXĐ)

Lan Anh
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 12 2021 lúc 20:55

\(\left\{{}\begin{matrix}xy=120\\xy=\left(x+10\right)\left(y-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=120\\xy=xy-x+10y-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=120\\x=10y-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(10y-10\right)y=120\\x=10y-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-y-12=0\\x=10y-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=4\Rightarrow x=30\\y=-3\Rightarrow x=-40\end{matrix}\right.\)

tranthuylinh
Xem chi tiết
Yeutoanhoc
3 tháng 6 2021 lúc 9:39

`100/x-100/(x+10)=1/2`
`<=>(100x+1000-100x)/(x^2+10x)=1/2`
`<=>1000/(x^2+10x)=1/2`
`<=>x^2+10x=2000`
`<=>x^2+10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=40,x_2=-50`
Vậy `S={40,-50}`

Pikachuuuu
3 tháng 6 2021 lúc 9:41

100x−100x+10=12100x-100x+10=12
⇔100x+1000−100xx2+10x=12⇔100x+1000-100xx2+10x=12
⇔1000x2+10x=12⇔1000x2+10x=12
⇔x2+10x=2000⇔x2+10x=2000
⇔x2+10x−2000=0⇔x2+10x-2000=0
Δ'=25+2000=2025Δ′=25+2000=2025
⇔x1=40,x2=−50⇔x1=40,x2=-50
-> S={40,−50}

An Thy
3 tháng 6 2021 lúc 9:41

\(\dfrac{100}{x}=\dfrac{1}{2}+\dfrac{100}{x+10}\Rightarrow\dfrac{100}{x}=\dfrac{x+210}{2x+20}\Rightarrow200x+2000=x^2+210x\)

\(x^2+10x-2000=0\Leftrightarrow\left(x+50\right)\left(x-40\right)=0\Rightarrow x=40\)

223 suriken
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Akai Haruma
16 tháng 12 2021 lúc 21:51

Lời giải:
Đặt $\frac{1}{x-y+2}=a;\frac{1}{x+y-1}=b$ thì HPT trở thành cơ bản:
\(\left\{\begin{matrix} 14a-10b=9\\ 3a+2b=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 14a-10b=9\\ 15a+10b=20\end{matrix}\right.\)

$\Rightarrow (14a-10b)+(15a+10b)=9+20$

$\Leftrightarrow 29a=29\Leftrightarrow a=1$.

$b=\frac{4-3a}{2}=\frac{1}{2}$

Vậy: \(\left\{\begin{matrix} \frac{1}{x-y+2}=1\\ \frac{1}{x+y-1}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-y+2=1\\ x+y-1=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x-y=-1\\ x+y=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)

Aurora
Xem chi tiết
Trương Huy Hoàng
21 tháng 1 2021 lúc 21:54

 

b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)

Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)

Khi đó ta có hpt:

\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x, y trái dấu nên ta xét 2 trường hợp

Th1: x > 0; y < 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)

Th2: x < 0; y > 0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)

Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu

c, Từ b ta có:

 Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)

Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)

Xét các trường hợp:

Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\) 

\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 1

\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)

Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)

\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) 5m = 7

\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)

Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|

Chúc bn học tốt!

Aurora
21 tháng 1 2021 lúc 21:41