Cho pt \(5x^2-2x+m=0\) (x là ẩn, m là tham số). Tính giá trị của m để PT có 2 nghiệm cùng dương
1) Cho pt \(5x^2-7x+1=0\)
a) C minh pt có 2 nghiệm phân biệt \(x_1,x_2\)
b) Tính giá trị biểu thức \(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x^2_2}+x^2_2\)
2) Cho pt \(x^2-4+1-2m=0\) (x là ẩn số)
a) tìm m để pt có nghiệm
b) tìm m để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x^2_2=6\)
`1)`
$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb
$b\big)$
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)
\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)
\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)
giải chi tiết với ak
cho pt ẩn x: \(x^2-2\left(m-3\right)x+m^2+3=0\) với m là tham số
a) tìm giá trị của m để pt có 2 nghiệm
b) gọi \(x_1,x_2\) là 2 nghiệm của pt. tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(\left(x_1-x_2\right)^2-5x_1x_2=4\)
a) ∆' = [-(m - 3)]² - (m² + 3)
= m² - 6m + 9 - m² - 3
= -6m + 6
Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0
⇔ -6m + 6 ≥ 0
⇔ 6m ≤ 6
⇔ m ≤ 1
Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm
b) Theo định lý Viét, ta có:
x₁ + x₂ = 2(m - 3) = 2m - 6
x₁x₂ = m² + 3
Ta có:
(x₁ - x₂)² - 5x₁x₂ = 4
⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4
⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4
⇔ (x₁ + x₂)² - 9x₁x₂ = 4
⇔ (2m - 6)² - 9(m² + 3) = 4
⇔ 4m² - 24m + 36 - 9m² - 27 = 4
⇔ -5m² - 24m + 9 = 4
⇔ 5m² + 24m - 5 = 0
⇔ 5m² + 25m - m - 5 = 0
⇔ (5m² + 25m) - (m + 5) = 0
⇔ 5m(m + 5) - (m + 5) = 0
⇔ (m + 5)(5m - 1) = 0
⇔ m + 5 = 0 hoặc 5m - 1 = 0
*) m + 5 = 0
⇔ m = -5 (nhận)
*) 5m - 1 = 0
⇔ m = 1/5 (nhận)
Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu
a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)
\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)
\(=4m^2-24m+36-4m^2-12=-24m+24\)
Để phương trình có hai nghiệm thì \(\Delta>=0\)
=>-24m+24>=0
=>-24m>=-24
=>m<=1
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-5x_1x_2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)
=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)
=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)
=>\(4m^2-24m+36-9m^2-27-4=0\)
=>\(-5m^2-24m+5=0\)
=>\(-5m^2-25m+m+5=0\)
=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)
=>(m+5)(-5m+1)=0
=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
Cho phương trình: (3. 2x. lg x - 12lg x - 2x + 4)\(\sqrt{5^x-m}\) = 0 (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để pt đã cho có đúng 2 nghiệm phân biệt?
\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))
Xét (1):
\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)
\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)
\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm
Để pt đã cho có đúng 2 nghiệm phân biệt ta có các TH sau:
TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)
TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định
(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)
Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)
\(\Rightarrow2< log_5m< \sqrt[3]{10}\)
\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)
\(\Rightarrow\) \(32-26+1\) giá trị nguyên
1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là
a,0 b, \(\dfrac{-1}{2}\) c, 2 d, 4
2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x0 + y0 bằng
a,3 b,1 c,0 d, 2
3. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng
a,\(\dfrac{4}{5}\) b,\(\dfrac{3}{5}\) c,\(\dfrac{3}{4}\) d \(\dfrac{4}{3}\)
4. trên đg tròn (O;R) lấy 2 điểm A,B sao cho số đo cung AB lớn hơn bằng \(270^o\) độ dài dây cung là
a, R\(\sqrt{2}\) b, R\(\sqrt{3}\) c, R d, 2R\(\sqrt{2}\)
5. cho đg tròn (O;3cm) 2 điểm A,B thuộc đường tròn và sđ \(\stackrel\frown{AB}\) = \(60^o\) độ dài cung nhỏ AB là
a, \(\dfrac{\pi}{2}\) cm b, \(3\pi\) c, \(\dfrac{\pi}{3}cm\) d, \(\pi\)cm
6. giá trị của m để 2 đg thẳng (d): y=xm+6 và (d'): y=3x+2-m song song là
a, m=-2 b, m=-3 c, m=-4 d, m=1
7. cho hàm số bậc nhất y=ax+b có hệ số góc bằng -1 và tung độ góc bằng 3 giá trị của biểu thức a2+b bằng
a,2 b, 4 c, 9 d, 5
8. cho hệ pt \(\left\{{}\begin{matrix}3x+my=1\\nx+y=3\end{matrix}\right.\) với m,n là tham số biết rằng (x;y)=(1,1) là 1 nghiệm của hệ đã cho giá trị của m+n bằng
a, -1 b, 3 c, 1 d, 2
9.cho Parabol (P) có pt \(y=\dfrac{x^2}{4}\) vào đường thẳng (d): y=-2x-4
a, (P) cắt (d) tại 2 điểm phân biệt
b, (P) cắt (d) tại điểm duy nhất (-2;2)
c, (P) ko cắt (d)
d, (P) tiếp xúc với (d), tiếp điểm là (-4;4)
10. tất cả các giá trị của x để \(\sqrt{-2x+6}\) có nghĩa là
a, x≥3 b, x>3 c, x≤3 d, x<-3
Câu 3: C
Câu 4: A
Câu 5: C
Câu 6: m=3
Câu 7: B
Câu 8: D
Câu 9: D
Câu 10: C
cho pt ẩn x sau:(2x+m)(x-1)-2x^2+mx+m-2=0
tìm các giá trị của m để pt có nghiệm là 1 số âm
help chiều nay thi toán rồi
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow\left(2m-2\right)x-2=0\)
\(\Leftrightarrow\left(2m-2\right)x=2\)
\(\Leftrightarrow x=\dfrac{2}{2m-2}\)
Để phương trình đã cho có nghiệm âm thì:
\(\dfrac{2}{2m-2}< 0\)
\(\Leftrightarrow2m-2< 0\)
\(\Leftrightarrow2m< 2\)
\(\Leftrightarrow m< 1\)
Vậy \(m< 1\) thì phương trình đã cho có nghiệm âm.
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2+mx-2x-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow\left(2m-2\right)x-2=0\left(1\right)\)
+) Nếu \(m=1\)\(\rightarrow\left(1\right)\Leftrightarrow0x-2=0\left(V_{n_o}\right)\)
+) Nếu \(m\ne1\rightarrow x=\dfrac{2}{2m-2}\)
Để \(x< 0\Leftrightarrow\dfrac{2}{2m-2}< 0\) mà \(2>0\Leftrightarrow2m-2< 0\Leftrightarrow m< 1\)
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Cho pt bậc hai 2 ẩn x, m là tham số: x2 + mx + 2m - 4 = 0 (1)
a/ Chứng minh pt luôn có nghiệm với mọi giá trị của m
b/ Gọi x1, x2 là 2 nghiệm của pt (1). Tìm các gt nguyên dương của m để bt
A=x1x2/x1+x2 có giá trị nguyên
GIẢI DÙM MÌNH VỚI
a) Ta có:
\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)
Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m
Vậy phương trình luôn có nghiệm với mọi m
b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)
Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)
Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4
Mà m nguyên dương nên m = 1; 2; 4
Vậy m = 1; 2; 4
a,\(\Delta=m^2-4.\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)
=> pt luôn có nghiệm
b,theo hệ thức viét ta có:
\(x_1x_2=2m-4;x_1+x_2=-m\)
\(\Rightarrow A=\frac{2m-4}{-m}=-2+\frac{4}{m}\)
\(\Rightarrow m\inƯ\left(4\right)\)
cho pt ẩn x m^2+4m-3=m^2+x
a)giải pt với m =2
b)tìm các giá trị của m để pt có 1 nghiệm duy nhất
c)tìm các giá trị nguyên của m để pt có nghiệm duy nhất là số nguyên
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)