Những câu hỏi liên quan
camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:02

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:06

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+c\left(a+b+c\right)}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự:

\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\) ; \(\dfrac{ca}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=1\)

\(P_{max}=1\) khi \(a=b=c=\dfrac{2}{3}\)

Lil Shroud
Xem chi tiết
Trần Minh Hoàng
8 tháng 1 2021 lúc 10:27

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

t. oanh
23 tháng 5 2021 lúc 21:11

Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{​​}\text{​​}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)

Ta thấy: \(\text{​​}\text{​​}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)

             \(\text{​​}\text{​​}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)

Do đó: P \(\ge2+4+5=11\)

Vậy: P(min)=11  khi:  \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)

Edogawa Conan
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 17:44

\(\dfrac{\sqrt{ab}}{a+c+b+c}\le\dfrac{\sqrt{ab}}{2\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{4}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{4}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

Big City Boy
Xem chi tiết
Phan Tiến Nghĩa
19 tháng 5 2022 lúc 21:38

Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)

Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 10:58

Bunhiacopxki:

\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)

\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)

Tương tự:

\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)

\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Hoàng Minh
Xem chi tiết
missing you =
8 tháng 5 2022 lúc 19:01

\(M=\dfrac{1}{\dfrac{c}{a}+\dfrac{2a}{b}+3}+\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{c}+3}+\dfrac{1}{\dfrac{b}{c}+\dfrac{2c}{a}+3}\)

\(đặt\left(\dfrac{a}{b};\dfrac{b}{c};\dfrac{c}{a}\right)=\left(x;y;z\right)\Rightarrow xyz=1\left(x;y;z>0\right)\)

\(M=\dfrac{1}{z+2x+3}+\dfrac{1}{x+2y+3}+\dfrac{1}{y+2z+3}\)

\(ta\) \(đi\) \(cminh:A\le\dfrac{1}{2}\)

có:

\(\dfrac{1}{z+2x+3}\le\dfrac{1}{6}\Leftrightarrow z+2x+3\ge6\Leftrightarrow2x+z\ge3\)

\(\dfrac{1}{x+2y+3}\le\dfrac{1}{6}\Leftrightarrow x+2y\ge3\)

\(\dfrac{1}{y+2z+3}\le\dfrac{1}{6}\Rightarrow y+2z\ge3\)

\(cộng\) \(vế\Rightarrow2x+z+2y+x+2z+y\ge9\Leftrightarrow x+y+z\ge3\left(đúng\right)\)

\(do:x+y+z\ge3\sqrt[3]{xyz}=3\)

\(\Rightarrow A\le\dfrac{1}{2}dấu"="\Leftrightarrow x=y=z=1\Rightarrow a=b=c\)

 

missing you =
8 tháng 5 2022 lúc 20:49

\(\left(x-y+2\right)^3-\left(x^3-y^3\right)=20\)

\(\Leftrightarrow\left(x-y\right)^3+12\left(x-y\right)+6\left(x-y\right)^2+8-\left(x^3-y^3\right)-8=12\)

\(\Leftrightarrow-3x^2y+3xy^2+12\left(x-y\right)+6\left(x-y\right)^2=12\)

\(\Leftrightarrow-3xy\left(x-y\right)+12\left(x-y\right)+6\left(x-y\right)^2=12\)

\(\Leftrightarrow-3\left(x+2\right)\left(y-2\right)\left(x-y\right)=12\Leftrightarrow\left(x+2\right)\left(y-2\right)\left(x-y\right)=-4\)

\(\Leftrightarrow\left(x-y\right)\left(xy-2x+2y-4\right)=-4\)

\(\Rightarrow\left(x;y\right)\)

 

Kinder
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 7:54

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

Thánh cao su
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}=\dfrac{36}{a+2b+3c}\)

\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}=\dfrac{4}{2a}+\dfrac{9}{3b}+\dfrac{1}{c}\ge\dfrac{\left(2+3+1\right)^2}{2a+3b+c}=\dfrac{36}{2a+3b+c}\)

\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}=\dfrac{9}{3a}+\dfrac{1}{b}+\dfrac{4}{2c}\ge\dfrac{\left(3+1+2\right)^2}{3a+b+2c}=\dfrac{36}{3a+2b+c}\)

Cộng theo vế: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36F\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6F\)

Mặt khác: \(ab+bc+ac=3abc\Leftrightarrow\dfrac{ab+bc+ac}{abc}=3\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\Rightarrow18\ge36F\Leftrightarrow F\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)