Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Minh

Giải PT nghiệm nguyên: $(x-y+2)^3=20+x^3-y^3$

Cho các số $a,b,c$ dương, tìm GTLN của:

\(M=\dfrac{ab}{bc+2a^2+3ab}+\dfrac{bc}{ca+2b^2+3bc}+\dfrac{ca}{ab+2c^2+3ca}\)

missing you =
8 tháng 5 2022 lúc 19:01

\(M=\dfrac{1}{\dfrac{c}{a}+\dfrac{2a}{b}+3}+\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{c}+3}+\dfrac{1}{\dfrac{b}{c}+\dfrac{2c}{a}+3}\)

\(đặt\left(\dfrac{a}{b};\dfrac{b}{c};\dfrac{c}{a}\right)=\left(x;y;z\right)\Rightarrow xyz=1\left(x;y;z>0\right)\)

\(M=\dfrac{1}{z+2x+3}+\dfrac{1}{x+2y+3}+\dfrac{1}{y+2z+3}\)

\(ta\) \(đi\) \(cminh:A\le\dfrac{1}{2}\)

có:

\(\dfrac{1}{z+2x+3}\le\dfrac{1}{6}\Leftrightarrow z+2x+3\ge6\Leftrightarrow2x+z\ge3\)

\(\dfrac{1}{x+2y+3}\le\dfrac{1}{6}\Leftrightarrow x+2y\ge3\)

\(\dfrac{1}{y+2z+3}\le\dfrac{1}{6}\Rightarrow y+2z\ge3\)

\(cộng\) \(vế\Rightarrow2x+z+2y+x+2z+y\ge9\Leftrightarrow x+y+z\ge3\left(đúng\right)\)

\(do:x+y+z\ge3\sqrt[3]{xyz}=3\)

\(\Rightarrow A\le\dfrac{1}{2}dấu"="\Leftrightarrow x=y=z=1\Rightarrow a=b=c\)

 

missing you =
8 tháng 5 2022 lúc 20:49

\(\left(x-y+2\right)^3-\left(x^3-y^3\right)=20\)

\(\Leftrightarrow\left(x-y\right)^3+12\left(x-y\right)+6\left(x-y\right)^2+8-\left(x^3-y^3\right)-8=12\)

\(\Leftrightarrow-3x^2y+3xy^2+12\left(x-y\right)+6\left(x-y\right)^2=12\)

\(\Leftrightarrow-3xy\left(x-y\right)+12\left(x-y\right)+6\left(x-y\right)^2=12\)

\(\Leftrightarrow-3\left(x+2\right)\left(y-2\right)\left(x-y\right)=12\Leftrightarrow\left(x+2\right)\left(y-2\right)\left(x-y\right)=-4\)

\(\Leftrightarrow\left(x-y\right)\left(xy-2x+2y-4\right)=-4\)

\(\Rightarrow\left(x;y\right)\)

 


Các câu hỏi tương tự
Blkscr
Xem chi tiết
missing you =
Xem chi tiết
VUX NA
Xem chi tiết
Hồ Quang Hưng
Xem chi tiết
Nguyễn  Thanh Hải
Xem chi tiết
Gay\
Xem chi tiết
Aurora
Xem chi tiết
missing you =
Xem chi tiết
Đào Quang Minh
Xem chi tiết