\(M=\dfrac{1}{\dfrac{c}{a}+\dfrac{2a}{b}+3}+\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{c}+3}+\dfrac{1}{\dfrac{b}{c}+\dfrac{2c}{a}+3}\)
\(đặt\left(\dfrac{a}{b};\dfrac{b}{c};\dfrac{c}{a}\right)=\left(x;y;z\right)\Rightarrow xyz=1\left(x;y;z>0\right)\)
\(M=\dfrac{1}{z+2x+3}+\dfrac{1}{x+2y+3}+\dfrac{1}{y+2z+3}\)
\(ta\) \(đi\) \(cminh:A\le\dfrac{1}{2}\)
có:
\(\dfrac{1}{z+2x+3}\le\dfrac{1}{6}\Leftrightarrow z+2x+3\ge6\Leftrightarrow2x+z\ge3\)
\(\dfrac{1}{x+2y+3}\le\dfrac{1}{6}\Leftrightarrow x+2y\ge3\)
\(\dfrac{1}{y+2z+3}\le\dfrac{1}{6}\Rightarrow y+2z\ge3\)
\(cộng\) \(vế\Rightarrow2x+z+2y+x+2z+y\ge9\Leftrightarrow x+y+z\ge3\left(đúng\right)\)
\(do:x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow A\le\dfrac{1}{2}dấu"="\Leftrightarrow x=y=z=1\Rightarrow a=b=c\)
\(\left(x-y+2\right)^3-\left(x^3-y^3\right)=20\)
\(\Leftrightarrow\left(x-y\right)^3+12\left(x-y\right)+6\left(x-y\right)^2+8-\left(x^3-y^3\right)-8=12\)
\(\Leftrightarrow-3x^2y+3xy^2+12\left(x-y\right)+6\left(x-y\right)^2=12\)
\(\Leftrightarrow-3xy\left(x-y\right)+12\left(x-y\right)+6\left(x-y\right)^2=12\)
\(\Leftrightarrow-3\left(x+2\right)\left(y-2\right)\left(x-y\right)=12\Leftrightarrow\left(x+2\right)\left(y-2\right)\left(x-y\right)=-4\)
\(\Leftrightarrow\left(x-y\right)\left(xy-2x+2y-4\right)=-4\)
\(\Rightarrow\left(x;y\right)\)