Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:30

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 8:03

loading...  loading...  

dương thị trúc tiên
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 10 2021 lúc 8:02

\(\sqrt{4x-8}-2\sqrt{\dfrac{x-2}{4}}=3\left(x\ge2\right)\\ \Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=3\\ \Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\\ \Leftrightarrow x=11\left(tm\right)\)

Lấp La Lấp Lánh
21 tháng 10 2021 lúc 8:02

ĐKXĐ: \(x\ge2\)

\(pt\Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=3\)

\(\Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)

Lấp La Lấp Lánh
21 tháng 10 2021 lúc 8:00

ĐKXĐ: \(3\ge x\ge5\)(vô lý)

Vậy pt vô nghiệm

Kiệt Võ
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 2:13

Lời giải:

PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$

$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$

$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$

$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$

$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$

$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$

Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.

Do đó: $\sqrt{xy}$ là scp

Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$

$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$

$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$

$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.

Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$

Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.

 

Ái Nữ
Xem chi tiết
Lưu Quang Trường
21 tháng 2 2021 lúc 17:04

Giải:

Tập xác định của phương trình

Tập xác định của phương trình

Biến đổi vế trái của phương trình

Biến đổi vế phải của phương trình

Phương trình thu được sau khi biến đổi

Biến đổi vế trái của phương trình

Phương trình thu được sau khi biến đổi

Đơn giản biểu thức

Giải phương trình

thu được x=2
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 19:53

\(\Leftrightarrow\sqrt{\left(\sqrt{x+7}-1\right)^2}+\sqrt{x+1-\sqrt{x+7}}=2\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+7\ge0\\x+1-\sqrt{x+7}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-7\\x\ge-1\\\left(x+1\right)^2\ge x+7\end{matrix}\right.\) \(\Leftrightarrow x\ge2\)

Khi đó pt tương đương:

\(\left|\sqrt{x+7}-1\right|+\sqrt{x+1-\sqrt{x+7}}=2\)

\(\Leftrightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}=3\)

Do \(x\ge2\Rightarrow\left\{{}\begin{matrix}\sqrt{x+7}\ge\sqrt{2+7}=3\\\sqrt{x+1-\sqrt{x+7}}\ge0\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}\ge3\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+1-\sqrt{x+7}}=0\end{matrix}\right.\) \(\Leftrightarrow x=2\)

Pt có đúng 1 nghiệm

khoimzx
Xem chi tiết
Hồng Phúc
21 tháng 12 2020 lúc 20:56

ĐK: \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-2}=3\sqrt{x^2-4}\)

\(\Leftrightarrow x-2=9x^2-36\)

\(\Leftrightarrow9x^2-x-34=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{17}{9}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2=4\)

Chi Nguyễn
Xem chi tiết
ILoveMath
27 tháng 11 2021 lúc 21:14

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

Nguyễn Hoàng Minh
27 tháng 11 2021 lúc 21:27

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

Nguyen Minh
Xem chi tiết
Vuy năm bờ xuy
3 tháng 6 2021 lúc 2:05

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Đặng Khánh
3 tháng 6 2021 lúc 8:49

(x,y) hoán vị của (4,9) . có vẻ hoạt động

DuaHaupro1
Xem chi tiết
BRVR UHCAKIP
30 tháng 3 2022 lúc 21:32

S=(1;2]

Đạt Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 22:16

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)

Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 22:16

\(ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

HUNgf
9 tháng 11 2021 lúc 22:43

ĐK:x≥2PT⇔√x−2(√x+2−3)=0⇔[√x−2=0√x+2=3⇔[x−2=0x+2=9⇔[x=2(tm)x=7(tm)