Tập nghiệm của bất phương trình \(x^2+2x+\dfrac{1}{\sqrt{x+4}}>3+\dfrac{1}{\sqrt{x+4}}\) là
Tổng bình phương các nghiệm của phương trình \(x^3+1=2\sqrt[3]{2x-1}\) trên tập số thực bằng
Tổng bình phương các nghiệm của phương trình \(x^3+1=2\sqrt[3]{x^2+5x-2}-2\) trên tập số thực bằng
Tập nghiệm của bất phương trình \(\sqrt{8-x}\le x-2\)
Phương trình \(5\sqrt{x^{^3}+x^2-2x}=2x^2+6x-2\) với nghiệm có dạng \(\dfrac{a\pm\sqrt{b}}{c}\) . Tính tổng S = a + b+ c
Tập nghiệm của bất phương trình \(\dfrac{2x\left(x^2-1\right)}{3-2x-x^2}\le0\) là
Phương trình \(\sqrt{x^2+4x-1}=x-3\) có nghiệm là
1.Tính tổng các nghiệm của phương trình: \(\sqrt{2x-x+3}-\sqrt{21x-17}+x^2-x=0\)
2.Phương trình: \(2x+5x-1=7\sqrt{x^3-1}\) có số nghiệm là mấy?
Gọi là tập hợp gồm các giá trị thực của tham số m để phương trình \(x-2\sqrt{x+2}-m-3=0\) có 2 nghiệm phân biệt . Mệnh đề đúng là :
\(A,S=\left(-6;-5\right)\)
\(B,S=(-6;-5]\)
\(C,S=[-6;-5)\)
\(D,S=\left(-6;+\infty\right)\)