Tổng bình phương các nghiệm của phương trình \(x^3+1=2\sqrt[3]{2x-1}\) trên tập số thực bằng
Tổng bình phương các nghiệm của phương trình \(x^3+1=2\sqrt[3]{x^2+5x-2}-2\) trên tập số thực bằng
Tập nghiệm của bất phương trình \(x^2+2x+\dfrac{1}{\sqrt{x+4}}>3+\dfrac{1}{\sqrt{x+4}}\) là
Phương trình \(5\sqrt{x^{^3}+x^2-2x}=2x^2+6x-2\) với nghiệm có dạng \(\dfrac{a\pm\sqrt{b}}{c}\) . Tính tổng S = a + b+ c
Tập nghiệm của phương trình \(3-2x+\sqrt{2-x}< x+\sqrt{2-x}\) là
Cho phương trình \(\sqrt{2x+m}=x-1\). Tất cả các giá trị của m để phương trình có hai nghiệm phân biệt lớn hơn 1
Phương trình \(\sqrt{x^2+4x-1}=x-3\) có nghiệm là
Cho phương trình \(\sqrt{x-1}+\sqrt{5-x}+3\sqrt{\left(x-1\right)\left(5-x\right)=m}\) Có tất cả bao nhiêu giá trị nguyên của m để phương trình trên có nghiệm
Cho phương trình \(m^2+m\left(x^2-3x-4-\sqrt{x+7}\right)-\left(x^2-3x-4\right)\sqrt{x+7}=0\) ,với m là tham số.
Có tất cả bao nhiêu số nguyên tố m để phương trình có số nghiệm thực nhiều nhất ?