Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ái Nữ

số nghiệm của phương trình \(\sqrt{x+8-2\sqrt{x+7}}=2-\sqrt{x+1-\sqrt{x+7}}\)

Lưu Quang Trường
21 tháng 2 2021 lúc 17:04

Giải:

Tập xác định của phương trình

Tập xác định của phương trình

Biến đổi vế trái của phương trình

Biến đổi vế phải của phương trình

Phương trình thu được sau khi biến đổi

Biến đổi vế trái của phương trình

Phương trình thu được sau khi biến đổi

Đơn giản biểu thức

Giải phương trình

thu được x=2
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 19:53

\(\Leftrightarrow\sqrt{\left(\sqrt{x+7}-1\right)^2}+\sqrt{x+1-\sqrt{x+7}}=2\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+7\ge0\\x+1-\sqrt{x+7}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-7\\x\ge-1\\\left(x+1\right)^2\ge x+7\end{matrix}\right.\) \(\Leftrightarrow x\ge2\)

Khi đó pt tương đương:

\(\left|\sqrt{x+7}-1\right|+\sqrt{x+1-\sqrt{x+7}}=2\)

\(\Leftrightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}=3\)

Do \(x\ge2\Rightarrow\left\{{}\begin{matrix}\sqrt{x+7}\ge\sqrt{2+7}=3\\\sqrt{x+1-\sqrt{x+7}}\ge0\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+7}+\sqrt{x+1-\sqrt{x+7}}\ge3\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+1-\sqrt{x+7}}=0\end{matrix}\right.\) \(\Leftrightarrow x=2\)

Pt có đúng 1 nghiệm


Các câu hỏi tương tự
Trần Đức Hiếu
Xem chi tiết
thùy dương nguyễn
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Cathy Trang
Xem chi tiết
Hải Lê
Xem chi tiết
Ái Nữ
Xem chi tiết
Hàn Vũ
Xem chi tiết
Hải Đăng
Xem chi tiết