Cho p,q > 0 : \(\dfrac{1}{p}+\dfrac{1}{q}=1;u,v\ge0\)
CHứng minh rằng \(u.v\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)
Cho f,g : \(\left[a,b\right]\rightarrow R\) Liên tục và p,q ở câu (a) ta luôn có :
\(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}\)