Cho a, b, c, x, y, z thoả mãn: x + y + z = 1 và \(\dfrac{a}{x^3}=\dfrac{b}{y^3}=\dfrac{c}{z^3}\). Chứng minh rằng: \(\sqrt[3]{\dfrac{a}{x^2}+\dfrac{b}{y^2}+\dfrac{c}{z^2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Trục căn thức ở mẫu
a) \(\dfrac{1}{1-\sqrt[3]{5}}\)
b) \(\dfrac{1}{\sqrt[3]{2}+\sqrt[3]{3}}\)
c) \(\dfrac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}\)
Cho biểu thức:
P = (\(\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\dfrac{1}{\sqrt{x}-1}\)) : (1+ \(\dfrac{\sqrt{x}}{x+1}\))
a) Rút gọn P
b) Tìm x để P =< 0
1) Cho x,y,z > 0 ; x.y.z =1 . CMR :
\(\sqrt{\dfrac{1+x^3+y^3}{x.y}}+\sqrt{\dfrac{1+y^3+z^3}{y.z}}+\sqrt{\dfrac{1+z^3+x^3}{x.z}}\)≥ 3\(\sqrt{3}\)
Chứng minh rằng với \(a\in R\) và \(a>\dfrac{1}{8}\) thì
\(A=\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\) là một số tự nhiên
c, Rút gọn.
a, \(\sqrt[3]{27a^3}-2a\) b, \(\sqrt[3]{27a^3}-\sqrt[3]{-8a^3}-\sqrt[3]{125a^3}\)
c, \(\sqrt[3]{16x^3}-\sqrt[3]{-54x^3}-\sqrt[3]{128x^3}\) d, \(\sqrt[3]{\dfrac{1}{8}y^6}+\sqrt[3]{\dfrac{1}{27}y^3}-\sqrt[3]{-\dfrac{1}{216}y^3}\)
7.cho biểu thức:
\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\) a)rút gon P
b)tính giá trị của P khi x =\(\dfrac{1}{2}\left(3+2\sqrt{2}\right)\)
8.cho biểu thức:p=\(\left(\dfrac{2a+1}{\sqrt{a^3}+1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right).\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a)rút gọn p
b)xét dấu của biểu thức p .\(\sqrt{1-a}\)
Rút gọn biểu thức:
\(B=\left(\dfrac{b}{b+8}-\dfrac{4b}{\left(\sqrt[3]{b}+2\right)^3}\right)\left(\dfrac{1+2\sqrt[3]{\dfrac{1}{b}}}{1-2\sqrt[3]{\dfrac{1}{b}}}\right)^2-\dfrac{24}{b+8}\)