cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\) . chứng minh rằng : \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
cho a,b,c>0
CMR:
1) \(a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)
2) \(\left(a+b+\dfrac{1}{2}\right)^2+\left(b+c+\dfrac{1}{2}\right)^2+\left(c+a+\dfrac{1}{2}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
cho a,b,c>0 thỏa mãn abc=1. chứng minh rằng
\(\dfrac{1}{1+a+b}+\dfrac{1}{1+b+c}+\dfrac{1}{1+c+a}\le\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\)
Cho a,b,c >0 thỏa \(a^2+b^2+c^2=1.CMR:\)
\(P=\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\)
Cho a,b,c > 0 thỏa abc=1.Chứng minh :
\(P=\dfrac{1}{\sqrt{a\left(1+b\right)}}+\dfrac{1}{\sqrt{b\left(1+c\right)}}+\dfrac{1}{\sqrt{c\left(1+a\right)}}>2\)
Cho a,b,c >0.Chứng minh:
\(P=\dfrac{a^2b}{ab^2+1}+\dfrac{b^2c}{bc^2+1}+\dfrac{c^2a}{ca^2+1}\ge\dfrac{3abc}{1+abc}\)
cho a,b,c>0. chứng minh rằng
\(\dfrac{1}{a\left(b+1\right)}+\dfrac{1}{b\left(c+1\right)}+\dfrac{1}{c\left(a+1\right)}\ge\dfrac{3}{abc+1}\)
\(\text{Cho a,b,c >0 thỏa a+b+c=1.Chứng minh:}\)
\(\Sigma_{cyc}\dfrac{a}{1+3bc+4\left(b+c\right)}\ge\dfrac{1}{2}\)