Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Pha

cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\) . chứng minh rằng : \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)

Nguyễn Thị Hồng Nhung
8 tháng 9 2017 lúc 5:57

Ta có:

\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

=>\(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=a+b+c\)

=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+c\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+b\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+a\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=a+b+c\)

=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

=>\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)(đpcm)


Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
Nguyễn Dũng
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Bertram Đức Anh
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Phan PT
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết