Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Dũng

Chứng minh rằng: Với a;b;c>0 thì: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

 Mashiro Shiina
14 tháng 1 2018 lúc 12:03

Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có: \(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2b}{b}}=2\sqrt{a^2}=2a\)

Tương tự với các vế ta được: \(\left\{{}\begin{matrix}\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

Cộng theo vế: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Rightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)


Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyễn Dương Huyền Nhi
Xem chi tiết
Phan PT
Xem chi tiết
Nguyễn Hồng Pha
Xem chi tiết
Phan PT
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Phan PT
Xem chi tiết