Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mot So
Xem chi tiết
Thanh Quân
28 tháng 1 2022 lúc 12:14

1) \(ĐK:x\ne2\) 

Nếu \(x>2\) 

BPT ⇔ \(x^2-2x+5-\left(x-1\right)\left(x-2\right)\ge0\) ⇔ \(x^2-2x+5-\left(x^2-3x+3\right)\ge0\)

\(x+2\ge0\) ⇔\(x\ge-2\) ⇒ Lấy \(x\ge2\)

Nếu \(x< 2\)

BPT ⇔\(\dfrac{-\left(x^2-2x+5\right)}{x-2}-x+1\ge0\) ⇔\(-x^2+2x-5-\left(x-1\right)\left(x-2\right)\ge0\)

\(-x^2+2x-5-x^2+3x-2\ge0\)

\(-2x^2+5x-7\ge0\)

\(x^2-\dfrac{5}{2}x+\dfrac{7}{2}\le0\)

\(\left(x-\dfrac{5}{4}\right)^2\le\dfrac{11}{4}\)

\(\left[{}\begin{matrix}x-\dfrac{5}{4}\le\dfrac{11}{4}\\x-\dfrac{5}{4}\le\dfrac{-11}{4}\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x\le4\\x\le\dfrac{-3}{2}\end{matrix}\right.\) ⇔ \(x\le\dfrac{-3}{2}\) 

S= [2;+∞)U(-∞;\(\dfrac{-3}{2}\)]

Thanh Quân
28 tháng 1 2022 lúc 12:20

2) \(ĐK:x\ne-1\) 

Nếu \(x>-1\) 

BPT ⇔ \(2x-3-2\left(x+1\right)< 0\) ⇔\(2x-3-2x-2< 0\)

 ⇔\(-5< 0\) ( luôn đúng với mọi \(x>-1\))

Nếu \(x< -1\)

BPT⇔\(\dfrac{-\left(2x-3\right)}{x+1}-2< 0\) ⇔\(-\left(2x-3\right)-2\left(x+1\right)< 0\) ⇔\(-4x+1< 0\) ⇔ \(x>\dfrac{-1}{4}\)

Vậy S=....

G.Dr
Xem chi tiết
Hồng Phúc
16 tháng 3 2021 lúc 18:55

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

Mạnh Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 21:57

Ta có: \(\dfrac{x}{x+2}< \dfrac{x}{x+1}\)

\(\Leftrightarrow\dfrac{x}{x+2}-\dfrac{x}{x+1}< 0\)

\(\Leftrightarrow\dfrac{x^2+x-x^2-2x}{\left(x+2\right)\left(x+1\right)}< 0\)

\(\Leftrightarrow\dfrac{-x}{\left(x+2\right)\cdot\left(x+1\right)}< 0\)

Trường hợp 1: \(\left\{{}\begin{matrix}-x>0\\\left(x+2\right)\left(x+1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\-2< x< -1\end{matrix}\right.\Leftrightarrow-2< x< -1\)

Trường hợp 2: \(\left\{{}\begin{matrix}-x< 0\\\left(x+2\right)\left(x+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x< -2\\x>-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x>0\)

Hoàng Huy
Xem chi tiết
Trúc Giang
24 tháng 7 2021 lúc 19:51

undefined

Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 20:04

Ta có: \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}\)

\(\Leftrightarrow2\left(x-1\right)-3\left(3x+5\right)\ge6-4x-5\)

\(\Leftrightarrow2x-2-9x-15-6+4x+5\ge0\)

\(\Leftrightarrow-3x\ge18\)

hay \(x\le-6\)

Quỳnh Anh
Xem chi tiết
Đỗ Hà Quyên
Xem chi tiết
HT2k02
10 tháng 4 2021 lúc 5:40

ĐKXĐ : x khác -1

\(\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+3x+4}{x+1}\\ \Leftrightarrow\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+2x+2}{x+1}+\dfrac{x+2}{x+1}\\ \Leftrightarrow\dfrac{x+2}{x+1}\le0\\ \Leftrightarrow x+2\ge0;x+1< 0\Leftrightarrow-1>x\ge-2\)

Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

FREESHIP Asistant
Xem chi tiết
Thanh Hoàng Thanh
28 tháng 1 2022 lúc 11:35

\(\dfrac{2x-1}{x+1}-2< 0.\left(x\ne-1\right).\\ \Leftrightarrow\dfrac{2x-1-2x-2}{x+1}< 0.\Leftrightarrow\dfrac{-3}{x+1}< 0.\)

Mà \(-3< 0.\)

\(\Rightarrow x+1>0.\Leftrightarrow x>-1\left(TMĐK\right).\)

\(\dfrac{x^2-2x+5}{x-2}-x+1\ge0.\left(x\ne2\right).\\ \Leftrightarrow\dfrac{x^2-2x+5-x^2+2x+x-2}{x-2}\ge0.\\ \Leftrightarrow\dfrac{x+3}{x-2}\ge0.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0.\\x-2\ge0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0.\\x-2\le0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3.\\x\ge2.\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3.\\x\le2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2.\\x\le-3.\end{matrix}\right.\)

Kết hợp ĐKXĐ.

\(\Rightarrow\left[{}\begin{matrix}x>2.\\x\le-3.\end{matrix}\right.\)

\(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}\le0.\left(x\ne1;x\ne\dfrac{-3}{2}\right).\)

Đặt \(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}=f\left(x\right).\)

Ta có bảng sau:

\(x\)\(-\infty\)              \(-\dfrac{3}{2}\)                       \(-\dfrac{1}{2}\)                       \(1\)                         \(2\)                        \(+\infty\)
\(1+2x\)         -              |            -                 0           +              |           +               |              +           
\(x-2\)         -               |           -                  |             -           |             -             0             +
\(2x+3\)         -              0           +                |             +            |              +           |             +
\(1-x\)         +              |           +                |              +           0             -            |            -                
\(f\left(x\right)\)

          -              ||          +                0               -          ||           +              0            -

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left(\dfrac{-3}{2};\dfrac{-1}{2}\right)\cup\)(1;2].

 

Mot So
28 tháng 1 2022 lúc 14:18

2) −(x2−2x+5)x−2−x+1≥0                                                        ⇔

Kyun Diệp
Xem chi tiết
Nguyễn Ngọc Lộc
1 tháng 5 2021 lúc 18:26

a, ĐKXĐ : \(D=R\)

BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)

Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)

BPTTT : \(5\sqrt{a+24}>a\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)

\(\Leftrightarrow-24\le a< 40\)

- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)

\(\Leftrightarrow-9< x< 4\)

Vậy ....

 

Nguyễn Ngọc Lộc
1 tháng 5 2021 lúc 18:37

b, ĐKXĐ : \(x>0\)

BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)

- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)

BPTTT : \(2a\le a^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)

\(\Leftrightarrow a\ge2\)

\(\Leftrightarrow a^2\ge4\)

- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)

\(\Leftrightarrow4x^2-12x+1\ge0\)

\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)

Vậy ...

 

 

8/5_06 Trương Võ Đức Duy
Xem chi tiết
Hồ Nhật Phi
5 tháng 4 2022 lúc 9:06

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).

Kiều Vũ Linh
5 tháng 4 2022 lúc 9:14

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)

\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)

\(\Leftrightarrow4-2x-6x-12\le3x-51\)

\(\Leftrightarrow-11x\le-43\)

\(\Leftrightarrow x\ge\dfrac{43}{11}\)

Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)

\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)

\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)

\(\Leftrightarrow0x\le-10\) (vô lý)

Vậy \(S=\varnothing\)