1, Viết các đa thức sau thành tích :
a, x3+8y3
b, a6-b3
c, 8y3-125
d, 8x3+27
* giúp mk với :
a) CM đẳng thức sau: x2 + y2 + 1 \(\ge\) x . y + x + y ( với mọi x , y )
b) Tìm gt lớn nhất của biểu thức sau:
A = \(\dfrac{x-2}{x^3-x^2-x-2}\)
Giúp với nhé! shin cau be but chiTuấn Anh Phan NguyễnNguyễn Huy TúAce Legonasoyeon_Tiểubàng giải
\(x^2+y^2+1\ge xy+x+y\)
\(\Leftrightarrow2\left(x^2+y^2+1\right)\ge2\left(xy+x+y\right)\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1+x^2-2x+1\ge0\)\(\Leftrightarrow\left(x-y\right)^2-\left(y-1\right)^2-\left(x-1\right)^2\ge0\)
Đúng với mọi x , y
Đẳng thức xảy ra khi \(\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\y=1\\x=1\end{matrix}\right.\Rightarrow x=y=1\)
b, \(A=\dfrac{x-2}{x^3-x^2-x-2}=\dfrac{x-2}{x^3-2x^2+x^2-2x+x-2}\)
\(=\dfrac{x-2}{x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)}\)
\(=\dfrac{x-2}{\left(x^2+x+1\right)\left(x-2\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
Dấu " = " xảy ra khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy \(MAX_A=\dfrac{4}{3}\) khi \(x=\dfrac{-1}{2}\)
a) x2 + y2 + 1 \(\ge x.y+x+y\) \(\Leftrightarrow\) x2+y2 +1-x.y-x-y\(\ge0\)
\(\Leftrightarrow\) 2x2 + 2y2 + 2 - 2xy - 2x-2y\(\ge0\)
\(\Leftrightarrow\) ( x2 + y2 - 2 xy ) + ( x2 + 1 - 2xy ) + ( y2+1- 2y) \(\ge0\)
\(\Leftrightarrow\) ( x-y )2 + ( x-1)2 + ( y-1)2 \(\ge0\) ( Bất đẳng thức luôn đúng )
Viết các đa thức sau thành tích
1. x2 - 6x + 9
2 25 + 10x + x2
3. \(\dfrac{1}{4}\)a2 + 2ab2 + 4b4
4 \(\dfrac{1}{9}\)-\(\dfrac{2}{3}\)y4 +y8
5 x3 + 8y3
6 8y3 -125
7 a6-b3
8 x2 - 10x + 25
9 8x3 - \(\dfrac{1}{8}\)
10 x2 + 4xy + 4y2
1. x2 - 6x + 9=(x-3)2
2. 25 + 10x + x2=(x+5)2
3. \(\dfrac{1}{4}a^2+2ab^2+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)
4.\(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)
5.x3 + 8y3=(x+8y)(x2-8xy+64y2)
6.8y3 -125=(2y-5)(4y2+10y+25)
7.a6-b3=(a2-b)(a4+a2b+b2)
8 x2 - 10x + 25=(x-2)2
1) \(x^2-6x+9=\left(x-3\right)^2\)
2) \(25+10x+x^2=\left(5+x\right)^2\)
3) \(\dfrac{1}{4}a^2+2ab+4b^4=\left(\dfrac{1}{2}a+2b^2\right)^2\)
4) \(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}-y^4\right)^2\)
5) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
6) \(8y^3-125=\left(2y-5\right)\left(4y^2+10y+25\right)\)
7) \(a^6-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
8) \(x^2-10x+25=\left(x-5\right)^2\)
9) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 27 x 3 - 54 x 2 y + 36 xy 2 - 8 y 3 ; b) x 3 - 1 + 5 x 2 -5+3x - 3;
c) a 5 +a 4 +a 3 +a 2 +a + 1.
a) ( 3 x - 2 y ) 3 . b) ( x - 1 ) ( x + 3 ) 2 .
Bài 1: Biến đổi các biểu thức sau thành tích các đa thức:
a) x3+8 d) 64x3-1/8y3
b) 27-8y3 e) 125x6-27y9
c) y6+1 f) x9-27y3
giúp mình nha mình cần gấp ngày 2/10 lúc 9:30 mình cảm ơn trước
a: \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
b: \(27-8y^3=\left(3-2y\right)\left(9+6y+4y^2\right)\)
c: \(y^6+1=\left(y^2+1\right)\left(y^4-y^2+1\right)\)
d: \(64x^3-\dfrac{1}{8}y^3=\left(4x-\dfrac{1}{2}y\right)\left(16x^2+2xy+\dfrac{1}{4}y^2\right)\)
Bài 1:
a) (12−x)3:(2x−1)3(12−x)3:(2x−1)3
b) (12+x)3:(2x+1)3(12+x)3:(2x+1)3
c) x3+8y3x3+8y3
d)a6−b3a6−b3
f) 8y3−125
a.1-2y+y2 b.(x+1)2-25 c.1-4x2 d.8-27x3
e.27+27x+9x2+x3 f.8x3-12x2y +6xy2-y3 g.x3+8y3
Bn cho vào trg ngoặc đi viết thế này khó hiểu quá
Cho hình vẽ sau:
Cho A đối xứng với B qua đường thẳng d.
C/m: AI + IC < AS + SC.
Nguyễn Huy Tú, Võ Đông Anh Tuấn, Tuấn Anh Phan Nguyễn, Ace Legona, Toshiro Kiyoshi, Neet, . . . . . pờ li heo mi!!!!!!!!!
Giải:
Ta có: IA = IB ( I thuộc trung trực của AB )
và SA = SB ( S thuộc trung trực của AB )
Mà CS + BS > BC
=> CS + AS > BI + IC
=> AS + CS > AI + IC
=> đpcm
Phân tích đa thức x 3 – 6 x 2 y + 12 x y 2 – 8 y 3 thành nhân tử
A. ( x – y ) 3
B. ( 2 x – y ) 3
C. x 3 – ( 2 y ) 3
D. ( x – 2 y ) 3
x 3 – 6 x 2 y + 12 x y 2 – 8 y 3 = x 3 – 3 . x 2 . ( 2 y ) + 3 . x . ( 2 y ) 2 – ( 2 y ) 3 = ( x – 2 y ) 3
đáp án cần chọn là: D
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)