Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:49

Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(A\) là:

\(\begin{array}{l}f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{\left( { - 2{{\rm{x}}^2}} \right) - \left( { - {{2.1}^2}} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2{{\rm{x}}^2} + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2\left( {{{\rm{x}}^2} - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2\left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \left[ { - 2\left( {{\rm{x}} + 1} \right)} \right] =  - 2\left( {1 + 1} \right) =  - 4\end{array}\)

Đậu Hũ Kho
Xem chi tiết
Hồng Phúc
4 tháng 3 2021 lúc 18:50

Ta thấy \(\left(2-2+1\right)\left(1-0+1\right)=2>0\Rightarrow A,B\) khác phía so với \(\Delta\)

Lấy B' đối xứng với B qua \(\Delta\)

BB' có phương trình \(2x+y+m=0\)

Do B thuộc đường thẳng BB' nên \(m=-2\Rightarrow BB':2x+y-2=0\)

B' có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\Rightarrow B'=\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)

a, \(MA+MB=MA+MB'\ge AB'\)

\(min=AB'\Leftrightarrow M\) là giao điểm của AB' và \(\Delta\)

\(\Leftrightarrow...\)

b, \(\left|MA-MB\right|=\left|MA-MB'\right|\le AB'\)

\(max=AB'\Leftrightarrow M\) là giao điểm của AB' và \(\Delta\)

\(\Leftrightarrow...\)

Pro No
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 2 2022 lúc 10:38

1. ĐKXĐ: \(a,b,c\) đôi một khác nhau.

\(\dfrac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)

\(\dfrac{x-c}{a-b}\left(\dfrac{x-b}{a-c}-\dfrac{x-a}{b-c}\right)=1\)

\(\dfrac{x-c}{a-b}.\dfrac{\left(x-b\right)\left(b-c\right)-\left(x-a\right)\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{bx-cx-b^2+bc-\left(ax-cx-a^2+ac\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{bx-b^2+bc-ax+a^2-ac}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{x\left(b-a\right)+c\left(b-a\right)-\left(b-a\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{x-c}{a-b}.\dfrac{\left(b-a\right)\left(x-a-b+c\right)}{\left(a-c\right)\left(b-c\right)}=1\)

\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-1=0\)

\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)-\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)

\(\left(a-b\right)\left[\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)\right]=0\)

\(a-b=0\) (loại do \(a\ne b\)) hay \(\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)=0\)

\(x^2-ax-bx+cx-cx+ac+bc-c^2-\left(bc-ab-c^2+ac\right)=0\)

\(x^2-ax-bx+cx-cx+ac+bc-c^2-bc+ab+c^2-ac=0\)

\(x^2-ax-bx+ab=0\)

\(x\left(x-a\right)-b\left(x-a\right)\)

\(\left(x-a\right)\left(x-b\right)=0\)

\(x=a\) hay \(x=b\)

-Vậy \(S=\left\{a;b\right\}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:23

a) Quan sát đồ thị:

điểm \(\left( {1; - 2} \right)\) (tức là có x =1; y=-2) thuộc đồ thị.

điểm \(\left( {2; - 1} \right)\) (tức là có x=2; y=-1) thuộc đồ thị hàm số.

điểm (0;0) không thuộc đồ thị hàm số.

b) Từ điểm trên Ox: \(x = 0\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 0 \right) =  - 1\)

Từ điểm trên Ox: \(x = 3\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 3 \right) = 0\)

c) Giao điểm của đồ thị và trục Ox là điểm \(\left( {3;0} \right)\).

Some one
Xem chi tiết
Nguyễn Ngọc Lộc
22 tháng 6 2021 lúc 16:08

a, Ta có : \(AB=OA-OB=a-b\left(cm\right)\)

b, Có lẽ là M trên tia Ox .

Ta có : \(OM=\dfrac{1}{2}\left(a+b\right)\)

=> M là trung điểm của AB .

Nguyễn Ngọc Lộc
22 tháng 6 2021 lúc 16:26

Mình làm rõ ý B hơn để bạn dễ hiểu nha

Thấy : \(OM=\dfrac{1}{2}\left(a+b\right)< \dfrac{1}{2}\left(a+a\right)\)

\(\Rightarrow OM< OA\)

\(\Rightarrow OM=OA-AM\)

\(\Rightarrow\dfrac{1}{2}\left(a+b\right)=a-AM\)

\(\Leftrightarrow AM=a-\dfrac{1}{2}\left(a+b\right)=a-\dfrac{1}{2}a-\dfrac{1}{2}b=\dfrac{1}{2}\left(a-b\right)\)

=> Khoảng cách từ M đến A bằng nửa khoảng cách từ B đến A .

=> M là trung điểm của AB .

Vậy ...

Nguyễn Việt Anh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2022 lúc 0:35

a.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)

\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)

b.

Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min  khi MG đạt min

\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox

Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)

c.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)

Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)

\(\Rightarrow M\left(-2;0\right)\)

Hạ Mặc Tịch
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 20:44

em mới lớp 8 nên làm đc mỗi câu 2 :(

2. pt có nghiệm <=> Δ' ≥ 0

<=> ( -m - 2 )2 - ( m2 + 4m - 12 ) ≥ 0

<=> m2 + 4m + 4 - m2 - 4m + 12 ≥ 0

<=> 16 ≥ 0 ( đúng với mọi m )

Vậy với mọi m thì pt có nghiệm

Khi đó theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=m^2+4m-12\end{matrix}\right.\)

| x1 + x2 | ≤ 6

<=> | x1 + x2 |2 ≤ 36

<=> ( x1 + x2 )2 ≤ 36

<=> x12 + 2x1x2 + x22 ≤ 36

<=> ( x1 + x2 )2 - 2x1x2 ≤ 36

<=> ( 2m + 4 )2 - 2( m2 + 4m - 12 ) ≤ 36

<=> 4m2 + 16m + 16 - 2m2 - 8m + 24 ≤ 36

<=> 2m2 + 8m - 4 ≤ 0

<=> m2 + 4m - 2 ≤ 0

<=> ( m + 2 )2 - 6 ≤ 0

<=> ( m + 2 - √6 )( m + 2 + √6 ) ≤ 0 

<=> -2 - √6 ≤ m ≤ - 2 + √6

Vậy ...

Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
16 tháng 5 2017 lúc 14:32

a) \(\overrightarrow{AB}\left(2;-2\right)\); \(\overrightarrow{CA}=\left(4;-4\right)\).
\(\dfrac{2}{4}=\dfrac{-2}{-4}\) nên \(\overrightarrow{AB};\overrightarrow{CA}\) cùng phương . Suy ra ba điểm A, B, C thẳng hàng.
\(\overrightarrow{AB}\left(2;1\right)\); \(\overrightarrow{AC}\left(m+3;2m\right)\).
3 điểm A, B, C thẳng hàng nên hai véc tơ \(\overrightarrow{AB},\overrightarrow{AC}\) cùng phương.
Suy ra: \(\dfrac{m+3}{2}=\dfrac{2m}{1}\Leftrightarrow m+3=4m\)\(\Leftrightarrow m=1\).

Dennis
Xem chi tiết
Akai Haruma
16 tháng 11 2018 lúc 15:58

Lời giải:

Gọi phương trình đường thẳng $AB$ là $y=ax+b$

Khi đó: \(\left\{\begin{matrix} 4=2a+b\\ -1=-3a+b\end{matrix}\right.\Rightarrow 5a=5\Rightarrow a=1\Rightarrow b=2\)

Vậy ptđt $AB$ có dạng $y=x+2$

Lại thấy: \(1\neq (-2)+2\) nên $C$ không thể thuộc đường thẳng $AB$

Suy ra $A,B,C$ không thẳng hàng. Bạn xem lại đề.

Nguyen
16 tháng 11 2018 lúc 16:03

Gọi \(A\left(x_1;y_1\right);B\left(x_2;y_2\right);C\left(x_3;y_3\right)\)

Độ dài AB: \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(=\sqrt{\left(2-\left(-3\right)\right)^2+\left(4-\left(-1\right)^2\right)}\) \(=5\sqrt{2}\) (đvđd)

Độ dài BC: \(BC=\sqrt{\left(\left(-3\right)-\left(-2\right)\right)^2+\left[\left(-1\right)-1\right]^2}\)

\(=\sqrt{\left(-1\right)^2+\left(-2\right)^2}\) \(=\sqrt{1+4}=\sqrt{5}\)(đvđd)

\(AC=\sqrt{\left(2-\left(-2\right)\right)^2+\left(4-1\right)^2}=5\)(đvđd)

\(\Rightarrow AB+BC\ne AC\)\(\Rightarrow A,B,C\) không thẳng hàng