Ta thấy \(\left(2-2+1\right)\left(1-0+1\right)=2>0\Rightarrow A,B\) khác phía so với \(\Delta\)
Lấy B' đối xứng với B qua \(\Delta\)
BB' có phương trình \(2x+y+m=0\)
Do B thuộc đường thẳng BB' nên \(m=-2\Rightarrow BB':2x+y-2=0\)
B' có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\Rightarrow B'=\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)
a, \(MA+MB=MA+MB'\ge AB'\)
\(min=AB'\Leftrightarrow M\) là giao điểm của AB' và \(\Delta\)
\(\Leftrightarrow...\)
b, \(\left|MA-MB\right|=\left|MA-MB'\right|\le AB'\)
\(max=AB'\Leftrightarrow M\) là giao điểm của AB' và \(\Delta\)
\(\Leftrightarrow...\)