c ) \(x^4+2x^3+2x^2+2x+1\)
c)5^x+1-5^x=20 c)2^x+2^x+4=544 c)4^2x+1+4^2x=80 c)3^2x+2+3^2x+1=108 c)7^x+3-7^x+1=16464
1) \(5^{x+1}-5^x=20\Leftrightarrow5^x\left(5-1\right)=20\Leftrightarrow5^x=5\Leftrightarrow x=1\)
2) \(2^x+2^{x+4}=544\Leftrightarrow2^x\left(1+2^4\right)=544\Leftrightarrow2^x=32\Leftrightarrow x=5\)
3) \(4^{2x+1}+4^{2x}=80\Leftrightarrow4^{2x}\left(4+1\right)=80\Leftrightarrow16^x=16\Leftrightarrow x=1\)
4) \(3^{2x+2}+3^{2x+1}=108\Leftrightarrow3^{2x}\left(3^2+3\right)=108\Leftrightarrow9^x=9\Leftrightarrow x=1\)
5) \(7^{x+3}-7^{x+1}=16464\Leftrightarrow7^x\left(7^3-7\right)=16464\Leftrightarrow7^x=49\Leftrightarrow x=2\)
c:Ta có: \(5^{x+1}-5^x=20\)
\(\Leftrightarrow5^x\cdot5-5^x=20\)
\(\Leftrightarrow5^x\cdot4=20\)
\(\Leftrightarrow5^x=5\)
hay x=1
c: Ta có: \(2^x+2^{x+4}=544\)
\(\Leftrightarrow2^x+2^x\cdot16=544\)
\(\Leftrightarrow2^x\cdot17=544\)
\(\Leftrightarrow2^x=32\)
hay x=5
c: Ta có: \(4^{2x+1}+4^{2x}=80\)
\(\Leftrightarrow16^x\cdot4+16^x=80\)
\(\Leftrightarrow16^x\cdot5=80\)
\(\Leftrightarrow16^x=16\)
hay x=1
c: Ta có: \(3^{2x+2}+3^{2x+1}=108\)
\(\Leftrightarrow9^x\cdot9+9^x\cdot3=108\)
\(\Leftrightarrow9^x\cdot12=108\)
\(\Leftrightarrow9^x=9\)
hay x=1
c: Ta có: \(7^{x+3}-7^{x+1}=16464\)
\(\Leftrightarrow7^x\cdot343-7^x\cdot7=16464\)
\(\Leftrightarrow7^x\cdot336=16464\)
\(\Leftrightarrow7^x=49\)
hay x=2
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
giải phương trình
a, \(\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1}\)
b,\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
c,\(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
d, \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
e, \(x^3+x^2+x+1=0\)
\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)
Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)
Bài 1: giải các pt sau:
1,(x-1)^2-(x+1)^2=2(x+3)
2,(2x-1)^2-(2x+1)^2=4(x-3)
3,(2x+3)^2-(2x+3).(2x-4)=-(x-2)^2
4,8x^3-(x+1)^3=3x-3
5,(3x-2).(9x^2+6x+4)-(3x+1).(9x^2-3x+1)=(2x+1).(2x-1)-4x(x-3)
\(\left(x-1\right)^2-\left(x+1\right)^2=2\left(x+3\right)\)
\(\Leftrightarrow\left(x-1+x+1\right)\left(x-1-x-1\right)=2\left(x+3\right)\)
\(\Leftrightarrow2x\left(-2\right)=2\left(x+3\right)\)
\(\Leftrightarrow-4x=2x+6\)
\(\Leftrightarrow-6x=6\)
\(\Leftrightarrow x=-1\)
2) \(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)
\(\Leftrightarrow\left(2x-1+2x+1\right)\left(2x-1-2x-1\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow4x\left(-2\right)-4x+12=0\)
\(\Leftrightarrow-12x=-12\)
\(\Leftrightarrow x=1\)
3)\(\left(2x+3\right)^2-\left(2x+3\right)\left(2x-4\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3-2x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow7\left(2x+3\right)+x^2-4x+4=0\)
\(\Leftrightarrow x^2+10x+25=0\)
\(\Leftrightarrow\left(x+5\right)^2=0\)
\(\Leftrightarrow x=-5\)
4) \(8x^3-\left(x+1\right)^3=3x-3\)
\(\Leftrightarrow8x^3-\left(x^3+3x+3x^2+1\right)-3x+3=0\)
\(\Leftrightarrow7x^3-3x^2-6x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x^2+4x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2+3\sqrt{2}}{7}\\x=\frac{-2-3\sqrt{2}}{7}\end{matrix}\right.\)
5)\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left(\left(3x\right)^3-1^3\right)=x-4\)
\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)=x-4\)
\(\Leftrightarrow-7=x-4\)
\(\Leftrightarrow x=-3\)
Bài 4: Tìm x, biết:
a) 3(2x – 3) + 2(2 – x) = –3 ; b) x(5 – 2x) + 2x(x – 1) = 13 ;
c) 5x(x – 1) – (x + 2)(5x – 7) = 6 ; d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8 ;
e) 2(5x – 8) – 3(4x – 5) = 4(3x – 4) + 11; f) 2x(6x – 2x 2 ) + 3x 2 (x – 4) = 8.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(x=\dfrac{1}{2}\)
===========
b/ \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
\(\Leftrightarrow x=\dfrac{13}{3}\)
Vậy: \(x=\dfrac{13}{3}\)
==========
c/ \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
d/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=8\)
\(\Leftrightarrow-2x=-2\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
e/ \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\dfrac{2}{7}\)
Vậy: \(x=\dfrac{2}{7}\)
==========
f/ \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow-x^3=8\)
\(\Leftrightarrow x=-2\)
Vậy: \(x=-2\)
Giải các phương trình sau:
a) 1/x-2 - 1/x2 - 4 = 4/5
b) 1/x+2 + 1/(x+2)2 = 22
c) 3/2x-16 + 3x-20/x-8 + 1/8 = 13x-10x2/3x-24
d) 2 + 2x-8x/2x2+8x + 2x2+7x+23/2x2+7x-4 = 2x+5/2x-1
e) 1/2-x + 14/x2-9 = x-4/x+3 + 7/3+x
g) 3/2x+1 = 6/2x+3 + 8/4x2+8x+3
a, x-3/4+2x-1/3=-x/6
b,(x-3)(2x-1)=(2x-1)(2x+3)
c,6/x-1-4/x-3+8/x^2-4x+3=0
\(a,\dfrac{x-3}{4}+\dfrac{2x-1}{3}=-\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)+4\left(2x-1\right)+2x}{12}=0\)
\(\Leftrightarrow3x-9+8x-4+2x=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
\(b,\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3-2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-6\end{matrix}\right.\)
a, x-3/4+2x-1/3=-x/6
b,(x-3)(2x-1)=(2x-1)(2x+3)
c,6/x-1-4/x-3+8/x^2-4x+3=0
Giai các bpt
a, 2x+2>4
b, 3x+2>-5
c,10-2x>2
d,1-2x<3
e,10x+3-5≤14x+12
f/ (3x-1)< 2x+4
g 4x-8 ≥3(2x-1)-2x+1
h/ x^x -x(x+2)> 3x-1
i/ x+8 >3x-1
j/ 3x- (2x+5) ≤(2x-3)
k/ (x-3) (x+3)<x(x+2)+3
l/ 2(3x-1) -2x<2x+1
m, (3-2x/5)> (2-x/3)
n, (x-2/6)-(x-1/3)≤x/2
o, (x+1/3)>(2x-1/6) -2
p, 1+ (2x+1)/3) >(2x-1/6) -2
q, (x+5/6)-(2x+1/3)≤ (x+3/2)
r, (5x+4/6) -(2x-1/12)≥4
a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)
b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)
c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)
d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)
a)2x+2>4
<=> 2x>4-2
<=>2x>2
<=>x>1
Vậy...
b)3x+2>-5
<=>3x>-5-2
<=>3x>-7
<=>x>\(\dfrac{-7}{3}\)
Vậy...
c)10-2x>2
<=>-2x>-10+2
<=>-2x>-8
<=>x<4
Vậy...
d)1-2x<3
<=>-2x<3-1
<=>-2x<2
<=>x>-1
Vậy...
e)10x+3-5\(\le\)14x+12
<=>10x-2\(\le\)14x+12
<=>10x-14x\(\le\)2+12
<=>-4x\(\le\)14
<=>x\(\ge\)\(\dfrac{-7}{2}\)
Vậy...
f)(3x-1)<2x+4
<=> 3x-2x<1+4
<=>x<5
Vậy...
Tìm nghiệm : a) (2x-3).(2x+3) B)(x-4).(x-1).(x-2) C)2x(3x-1)-3x(5+2x) D)(3x-2).(3x+2)-4.(x-1)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
\(c,2x\left(3x-1\right)-3x\left(5+2x\right)=0\\ \Leftrightarrow6x^2-2x-15x-6x^2=0\\ \Leftrightarrow-17x=0\\ \Leftrightarrow x=0\\ d,\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\\ \Leftrightarrow9x^2-4-4x+4=0\\ \Leftrightarrow9x^2-4x=0\\ \Leftrightarrow x\left(9x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
Rút gọn các biểu thức sau
A.(2x+1)^2-(2x+1)(2x-1)
B.(4x+3)(x-1)-2x (2x+1 )
C.(2x+3)^2-(4x+1)(x+5)
D.(x+2)^3-(x-1)(x^2+x+1)
E.(x+2)(x^2-2x+1)-(x+3)(x-3)
F.(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)
a)
$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$
$=2(2x+1)$
b)
$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$
c)
$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$
$=-9x+4$
d)
$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$
$=6x^2+12x+9$
e)
$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$
$=x^3-x^2-3x+11$
f)
$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$
$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$