\(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}\)
\(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}\)
cầm cm cái này trước đã
\(\dfrac{1}{a-b}-\dfrac{1}{a-c}=\dfrac{a-c}{a-b}+\dfrac{a-b}{a-c}=\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}\)
áp dụng vào bài
\(=>\left\{{}\begin{matrix}\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}=\dfrac{1}{a-b}-\dfrac{1}{a-c}\\\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}=\dfrac{1}{b-c}-\dfrac{1}{b-a}\\\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=\dfrac{1}{c-a}-\dfrac{1}{c-b}\end{matrix}\right.\)
thay vào đề,
=> đpcm
chúc may mắn
Cho a, b, c\(\ge\)0
\(a+b+c=0\)
Tìm giá trị nhỏ nhất của biểu thức: B= \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
\(B=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\ge\dfrac{\left(1+1+1\right)^2}{a+1+b+1+c+1}=\dfrac{9}{0+3}=3\)
Dấu "=" xảy ra khi a = b = c = 0
Chứng minh rằng:
\(\dfrac{a^2+b^2}{^2}\ge ab\)
Ta có \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
Cộng cả hai vế với 2ab ta được:
\(a^2+b^2\ge2ab\)
Chia cả hai vế với 2 ta được:
\(\dfrac{a^2+b^2}{2}\ge ab\)
Cách khác:
\(\dfrac{a^2+b^2}{2}\ge ab\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Ta được đpcm.
\(\dfrac{3-5x}{-4}\) ≤ 0
Giải hộ mình với ạ. Mình cảm ơn!
\(\dfrac{3-5x}{-4}\le0\)
\(\Leftrightarrow\left(-4\right).\dfrac{3-5x}{-4}\ge0.\left(-4\right)\)
\(\Leftrightarrow3-5x\ge0\)
\(\Leftrightarrow3\ge5x\)
\(\Leftrightarrow5x\le3\Leftrightarrow x\le0,6\)
\(\dfrac{3-5x}{-4}\le0\)
\(\Leftrightarrow3-5x\ge0\) ( Vì -4 <0 )
\(\Leftrightarrow3\ge5x\)
\(\Leftrightarrow5x\le3\)
\(\Leftrightarrow x\le\dfrac{3}{5}\)
Chứng minh bđt:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\dfrac{9}{2}\forall a,b,c>0\)
Áp dụng bđt Cauchy Schwarz dạng Engel ta có:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)
\(\ge\dfrac{9}{2}\left(đpcm\right)\)
Cho a và b là 2 số dương bất kì. Chứng minh rằng:
a/b + b/a lớn hơn hoặc bằng 2
Xét hiệu:
\(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}\)
\(=\dfrac{\left(a-b\right)^2}{ab}\ge0\)\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Dấu = xảy ra \(\Leftrightarrow a=b\)
Co tam giác có nửa chu vi p = \(\dfrac{a+b+c}{2}\) với a , b , c là độ dài 3 cạnh
Chứng minh \(\dfrac{1}{p-a}\) + \(\dfrac{1}{p-b}\) + \(\dfrac{1}{p-c}\) \(\ge\) 2(\(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) + \(\dfrac{1}{c}\) )
Từ \(p=\dfrac{a+b+c}{2}\Rightarrow2p=a+b+c\)
Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\) ta có:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2q-a-b}\)
\(=\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\). Tương tự cho 2 BĐT còn lại:
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a};\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
vói mọi x,y,z chứng minh rằng
b) x^2 + y^2 + z^2 lớn hơn hoặc bằng 2xy - 2xz + 2yz
c) x^2 + y^2 + z^2 +3 lớn hơn hoặc bằng 2 ( x+y +z )
--Giúp mình nhé ! cảm ơn nhiều ;) :*
Cho x,y,z>0 và x+y+z=1
CMR: \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge64\)
Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)
\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Áp dụng vào ta có:
\(\left(1+\frac{1}{x} \right)\left(1+\frac{1}{y} \right)\left(1+\frac{1}{z} \right)=\dfrac{(1+x)(1+y)(1+z)}{xyz} \geq \dfrac{(1+\sqrt[3]{xyz})^3}{xyz} \geq 64\)
Từ \(x+y+z=1\Rightarrow xyz\le \frac{1}{27}\)
\(\Rightarrow \dfrac{(1+\sqrt[3]{xyz})^3}{xyz}=\bigg(\dfrac{1}{\sqrt[3]{xyz}}+1\bigg)^3 \geq 64\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Áp dụng trực tiếp BĐT AM-GM ta có:
\(1+\dfrac{1}{x}=\dfrac{1}{x}\left(x+y+z+x\right)\ge\dfrac{1}{x}4\sqrt[4]{x^2yz}\)
\(\Rightarrow1+\dfrac{1}{x}\ge\dfrac{4}{x}\sqrt[4]{\dfrac{x^4yz}{x^2}}=4\sqrt[4]{\dfrac{yz}{x^2}}\)
Tương tự ta có: \(1+\dfrac{1}{y}\ge4\sqrt[4]{\dfrac{xz}{y^2}};1+\dfrac{1}{z}\ge4\sqrt[4]{\dfrac{xy}{z^2}}\)
\(\Rightarrow\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge4\sqrt[4]{\dfrac{yz}{x^2}}4\sqrt[4]{\dfrac{xz}{y^2}}4\sqrt[4]{\dfrac{xy}{z^2}}=64\)
Còn tỉ tỉ cách nữa đây, cần thì nhắn tin ==
Cho tam giác ABC là độ dài 3 cạnh của một tam giác . C/m \(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+4abc>a^3+b^3+c^3\)
Làm theo kiểm phá giai đoạn nha.
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+4abc>a^3+b^3+c^3\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+4abc-a^3-b^3-c^3>0\)
\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)>0\) đúng vì
\(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)
\(\RightarrowĐPCM\)
Vì a, b, c là 3 cạnh tam giác nên:
\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)>0\)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-2abc-a^3-b^3-c^3>0\)
\(\Leftrightarrow\left(ab^2-2abc+ac^2\right)+\left(ba^2-2abc+bc^2\right)+\left(ca^2-2abc+cb^2\right)+4abc>a^3+b^3+c^3\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+4abc>a^3+b^3+c^3\) (ĐPCM)