Cho a > 0 , b > 0. Chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}>hoăc=\dfrac{4}{a+b}\)
Cho a > 0 , b > 0. Chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}>hoăc=\dfrac{4}{a+b}\)
Câu hỏi của Vịtt Tên Hiền - Toán lớp 8 | Học trực tuyến nhớ tìm kiếm trước khi hỏi
giải phương trình
\(\left|x-2\right|+\left|x+1\right|=10\)
+) Xét \(x\ge2\) ta có:
\(x-2+x+1=10\)
\(\Rightarrow2x-1=10\)
\(\Rightarrow x=5,5\) ( t/m )
+) Xét \(-1\le x< 2\) ta có:
\(2-x+x+1=10\)
\(\Rightarrow3=10\) ( vô lí )
+) Xét \(x< -1\) ta có:
\(2-x-\left(-x-1\right)=10\)
\(\Rightarrow2-x+x+1=10\)
\(\Rightarrow3=10\) ( vô lí )
Vậy x = 5,5
tìm gtnn của (x^2+x+1)/(x^2+2x+1)
Bạn thử áp dụng công thức này sẽ ra được gtnn của A
A=\(\dfrac{ax^{2}+bx+c}{mx^{2}+nx+p}\)
\(\leftrightarrow\)\((An-b)^{2}-4(Am-a)(Ap-c)=0\)
1.cho a,b,c>0,abc=1
tìm Max P= \(\dfrac{1}{2a+3b+c+6}+\dfrac{1}{2b+3c+a+6}+\dfrac{1}{2c+3a+b+6}\)
2.Tìm số tự nhiên n để
a. A= n^3-n^2+n-1 là số nguyên tố
b.n^5-n+2 là số chính phương
Giải câu 1 thôi câu 2 không hứng lắm:
\(P=\dfrac{1}{2a+3b+c+6}+\dfrac{1}{2b+3c+a+6}+\dfrac{1}{2c+3a+b+6}\)
Ta có:
\(\dfrac{1}{2a+3b+c+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{b+2}\right)=\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{2}{b+2}\right)\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{2b+3c+a+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{b+2}+\dfrac{2}{c+2}\right)\left(2\right)\\\dfrac{1}{2c+3a+b+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{c+2}+\dfrac{2}{a+2}\right)\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được:
\(P\le\dfrac{3}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
\(\le\dfrac{3}{16.3\sqrt[3]{abc}}+\dfrac{3}{16}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
\(=\dfrac{1}{16}+\dfrac{3}{16}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\left(4\right)\)
Giờ ta tính Max của \(Q=\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
Vì \(abc=1\) nên không mất tính tổng quát ta giả sử \(\left\{{}\begin{matrix}ab\le1\\c\ge1\end{matrix}\right.\)
Ta có: \(Q=\dfrac{1}{2}.\left(\dfrac{1}{\dfrac{a}{2}+2}+\dfrac{1}{\dfrac{b}{2}+2}\right)+\dfrac{1}{c+2}\)
Ta có bổ đề: Với \(x,y>0;xy\le1\) thì
\(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
Áp dụng vào bài toán ta được:
\(Q\le\dfrac{2}{1+\dfrac{\sqrt{ab}}{2}}+\dfrac{1}{c+2}=\dfrac{2\sqrt{c}}{2\sqrt{c}+1}+\dfrac{1}{c+2}\)
Xét hàm số \(f\left(\sqrt{c}\right)=\dfrac{2\sqrt{c}}{2\sqrt{c}+1}+\dfrac{1}{c+2}\) với \(\sqrt{c}\ge1\) thì hàm số \(f\left(\sqrt{c}\right)\) nghịch biến. Vậy Q đạt GTLN khi c bé nhất.
\(\Rightarrow Q\le f\left(1\right)=1\left(2\right)\)
Từ (4) và (5) ta suy ra
\(P\le\dfrac{1}{16}+\dfrac{3}{16}.1=\dfrac{1}{4}\)
Vậy GTLN là \(P=\dfrac{1}{4}\) đạt được khi \(a=b=c=1\)
2) A = n3 - n2 + n - 1
A = n2(n - 1) + (n - 1)
A = (n - 1)(n2 + 1)
Để A nguyên tố thì n > 1
=> n2 + 1 > 1
Mà A = (n - 1)(n2 + 1) là số nguyên tố, chỉ gồm 2 ước là 1 và chính nó
Nên A = n2 + 1; n - 1 = 1
=> n = 2 (TM)
b) n5 - n + 2
= n(n4 - 1) + 2
= n(n2 - 1)(n2 + 1) + 2
= n(n - 1)(n + 1)(n2 + 1) + 2
n(n - 1)(n + 1) là tích 3 số nguyên liên tiếp do n \(\in N\) nên n(n - 1)(n + 1) chia hết cho 3
=> n(n - 1)(n + 1)(n2 + 1) + 2 chia 3 dư 2, không là số chính phương
Vậy ...
1) cho 3 số nghuyên dương x,y,z thỏa:x+y+z=3
khi \(C=\dfrac{1}{yz}+\dfrac{1}{xz}\) đạt gtrị nhỏ nhất thì (x;y;z)=(...;...;...)
2) biết \(5x^2-5xy+y^2+\dfrac{4}{x^2}=0\) tìm gtrị nhỏ nhất của tích xy
3)cho 2 số a,b thỏa:\(a^2+b^2=4a+2b+540\) tính gtrị lớn nhất của \(P=23a+4b+2013\)
help me !!!! mình cần gấp
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(C=\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xz+yz}=\dfrac{4}{xz+yz}\)
Từ \(x+y+z=3\Rightarrow x+y=3-z\)
\(\Rightarrow C\ge\dfrac{4}{xz+yz}=\dfrac{4}{z\left(x+y\right)}=\dfrac{4}{z\left(3-z\right)}=\dfrac{4}{-z^2+3z}\)
Lại có: \(-z^2+3z=\dfrac{9}{4}-\left(z-\dfrac{3}{2}\right)^2\le\dfrac{9}{4}\)
\(\Rightarrow C\ge\dfrac{4}{-z^2+3z}\ge\dfrac{4}{\dfrac{9}{4}}=\dfrac{16}{9}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{3}{4};z=\dfrac{3}{2}\)
Bài 2:
Từ \(5x^2-5xy+y^2+\dfrac{4}{x^2}=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2+\dfrac{4}{x^2}-4\right)+4=xy\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(x-\dfrac{2}{x}\right)^2+4\ge xy\)
Dễ thấy: \(VT\ge4\forall x;y\)\(\Rightarrow VP\ge4\forall x;y\)
Đẳng thức xảy ra khi \(\left(x;y\right)=\left(\sqrt{2};2\sqrt{2}\right);\left(-\sqrt{2};-2\sqrt{2}\right)\)
Bài 3:
Từ \(a^2+b^2=4a+2b+540\)
\(\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2-2b+1\right)=545\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-1\right)^2=545\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left (P-2063 \right )^2=\left [23(a-2)+4(b-1) \right ]^2\)
\(\leq (23^2+4^2)\left [ (a-2)^2+(b-1)^2 \right ]\)
\(\Rightarrow P\le545+2063=2608\)
Đẳng thức xảy ra khi \(a=25;b=5\)
1/ chứng minh \(\dfrac{x^2+6x+11}{x^2+1}>0\) vs mọi giá trị của x
ĐKXĐ: \(x^2\ge0\forall x\Rightarrow x^2+1>0\forall x\) nên biểu thức xác định với mọi x thuộc R
ta có:
\(\dfrac{x^2+6x+11}{x^2+1}=\dfrac{x^2+6x+9+3}{x^2+1}=\dfrac{\left(x+3\right)^2+3}{x^2+1}\)
Vì \(\left(x+3\right)^2\ge0\forall x\Rightarrow\left(x+3\right)^2+3>0\forall x\\ \Rightarrow\dfrac{x^2+6x+11}{x^2+1}>0\forall x\)
tìm x sao cho (x-2)(x-5)>0
Ta có : x-2=0 \(\Leftrightarrow\) x=2
x-5=0\(\Leftrightarrow\) x=5
Lập bảng xét dấu ta có:
x | 2 5 |
x-2 | - 0 + + |
x-5 | - - 0 + |
(x-2)(x-5) | + 0 - 0 + |
Vậy nghiệm của bất phương trình là: x<2 hoặc x>5
(x-2)(x-5)>0
=> x-2 và x-5 phải cùng dấu
Mà x-2 > x-5
=>[ x-5 > 0
x-2 > 0
hoặc [x-5 < 0
x-2 < 0
=> [x-5 > 0
x-2 < 0
=> [x>5
x<2
cho x>0, y>0
chứng minh \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
Áp dụng BDDT AM-GM với các cố thực dương ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}=2}\)
Dấu"=" xảy ra\(\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{x}\)
\(\Leftrightarrow x^2=y^2\)
\(\Leftrightarrow x=y\)
bài này cũng hỏi được \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)
Mình nghĩ đây cũng là một BĐT bạn nên nhớ để áp dụng vào bài tập :)
tìm x sao cho \(\dfrac{x-5}{x-6}>2\)
\(\dfrac{x-5}{x-6}< 2\) như vậy mới đúng chứ bạn ??!
Giải
\(\Leftrightarrow-x>-7\Leftrightarrow x< 7\)
Vậy nghiệm của bất phương trình là
Giải và biện luận bất phương trình:
1<= (x+m)/(mx+1) <=1