Câu 2 (2,0 điểm)
a) Tìm các số tự nhiên x thỏa mãn bất phương trình sau: 5x – 2 =< 2x + 8
b) Cho 1/5.a – 4 < 1/5.b – 4. Hãy so sánh a và b
c) Chứng minh rằng: (a + b)2 >= 4ab
HÃY CHỨNG MINH BẤT ĐẲNG THỨC SAU :
1 ( a+b)^2 > 4ab với mọi a,b
2 cho a<b . cmr : 3-b/2 < 4- a/2
3 a^2 + b^2 + c^2 > ab + bc + ca với mọi a,b,c
4 a ( a-b) + b ( b-c) + c ( c-a) > 0 với mọi a,b,c
5 a^2 + b^2 + c^2 > 1/3 với a+b+c =1
1) giải các phương trình sau
a)3x-7=|x-1|+2
b)|-x-3|+2x=1+2x
2) rút gọn
a) A=|x-3|+2x+4 với x>=3
b) B=|-x|+3x-7 với x<2
c) C=|x-5|+|x|-2x-3 với x<4
3) Chứng minh
x2-x-4 không âm
Bài 1 :
Cho m > n. Hãy so sánh 2m - 3 và 2n - 3
Bài 2 :
1) Kiểm tra xem -2 có là nghiệm của bất phương trình 3x +2 > -5 không?
2) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a) -2y + 4 > hoặc = 0
b) 2(3t - 1) < 2t - 3
3) Tìm nghiệm nhỏ hơn 8 của bất phương trình :
x+1/2 - 1/3x <= 1+2x - 1 /6
Bài 3: Giải phương trình
1) [2x - 3 ] = 5
2) [4x] = x+10
Bài 4 :
Chứng minh bất đẳng thức a^2 + b^2 +c^2 lớn hơn hoặc bằng ab + ac + bc
Giải các bất phương trình sau và biểu diễn trục số :
a)\(\left(2x-3\right)\left(x+4\right)>2\left(x^2+1\right)\)
b)\(\dfrac{3x-1}{x-2}-\dfrac{5x+1}{3}>4\)
Bài toán 1. Cho a, b, c là các số thực dương thỏa mãn $latex a+b+c=3$. Chứng minh rằng
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{\text{2}\left( {{a}^{\text{2}}}+{{b}^{2}}+{{c}^{2}} \right)}{3}\ge 5$
a) Chứng minh rằng :(x-y)(x4+x3y+x2y2+xy3+y4)=x5-y5
b) Cho a>b>0 và a5+b5= a-b. Chứng minh rằng: a4+b4<1
Bài 1:giải các phương trình sau
a)3x+5=14
b)(x+3)(2x-5)=0
c)\(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
d)\(\left|2x-1\right|=x+4\)
Bài 1 giải phương trình sau
a) |x-2|-|x+3|=0
b) |x-3|-|x+4|=2x-5