Giải:
a) \(3x+5=14\)
\(\Leftrightarrow3x=14-5=9\)
\(\Leftrightarrow x=\dfrac{9}{3}=3\)
Vậy ...
b) \(\left(x+3\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ...
c) \(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\) (1)
ĐKXĐ: \(x\ne2;x\ne4\)
\(\left(1\right)\Leftrightarrow\dfrac{x-1}{x-2}+\dfrac{-x-3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4-x\right)}{\left(x-2\right)\left(4-x\right)}+\dfrac{\left(-x-3\right)\left(x-2\right)}{\left(4-x\right)\left(x-2\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Rightarrow\left(x-1\right)\left(4-x\right)+\left(-x-3\right)\left(x-2\right)=2\)
\(\Leftrightarrow\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow4x-4-x^2+x-\left(x^2+3x-2x-6\right)=2\)
\(\Leftrightarrow4x-4-x^2+x-x^2+3x-2x-6=2\)
Tự triển khai và tìm ra nghiệm của phương trình.
d) \(\left|2x-1\right|=x+4\) (2)
TH1: \(2x-1\ge0\Leftrightarrow x\ge\dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow2x-1=x+4\)
\(\Leftrightarrow2x-x=4+1\)
\(\Leftrightarrow x=5\) (thỏa mãn)
TH2: \(2x-1< 0\Leftrightarrow x< \dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow-2x+1=x+4\)
\(\Leftrightarrow-2x-x=4-1\)
\(\Leftrightarrow-3x=3\)
\(\Leftrightarrow x=-1\) (thỏa mãn)
Vậy ...
$a) 3x + 5 = 14$
$\Leftrightarrow 3x = 14 - 5$
$\Leftrightarrow 3x = 9$
$\Leftrightarrow x = \frac{9}{3}$
$\Leftrightarrow x = 3$
Vậy tập nghiệm của pt: S = {3}
$b) (x + 3)(2x - 5) = 0$
$\Leftrightarrow x + 3 = 0 hoặc 2x - 5 = 0$
$\Leftrightarrow x = - 3 hoặc 2x = 5$
$\Leftrightarrow x = - 3 hoặc x = \frac{5}{2}$
Vậy tập nghiệm của pt: S = {$- 3$; $\frac{5}{2}$}
a) \(3x+5=14\)
⇔\(3x=14-5\)
⇔\(3x=9\)
⇔\(x=\dfrac{9}{3}\)
⇔\(x=3\)
Vậy S={3}
b)\(\left(x+3\right)\left(2x-5\right)=0\)
⇔\(\left\{{}\begin{matrix}x+3=0\\2x-5=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=0-3\\2x=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy S={\(-3;\dfrac{5}{2}\)}
b) \(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\) (\(x\ne2;x\ne4\))
⇔\(\dfrac{x-1}{x-2}-\dfrac{x+3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
⇔\(\dfrac{\left(x-1\right)\left(4-x\right)}{\left(x-2\right)\left(4-x\right)}-\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(4-x\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
⇔\(\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
⇔\(4x-x^2-4+x-x^2+2x-3x+6=2\)
⇔\(-2x^2+4x+2=2\)
⇔\(-2x\left(x-2\right)=0\)
⇔\(\left\{{}\begin{matrix}-2x=0\\x-2=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=0\\x=2\left(loại\right)\end{matrix}\right.\)
Vậy S={0}
d) \(\left|2x-1\right|=x+4\)
*Nếu 2x-1≥0 ⇔ x≥\(\dfrac{1}{2}\) thì phương trình trở thành:
\(2x-1=x+4\)
⇔\(2x-x=1+4\)
⇔\(x=5\) (thỏa mãn)
*Nếu 2x-1<0 ⇔ x<\(\dfrac{1}{2}\) thì phương trình trở thành:
\(-2x+1=x+4\)
⇔\(-2x-x=-1+4\)
⇔\(-3x=3\)
⇔\(x=-1\) (thỏa mãn)
Vậy S={-1;5}