a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
a/ Cho a>b . Chứng minh rằng : a+2 > b-3
b/ a;b thuộc số thực dương
Chứng minh rằng : \(\frac{1}{a}\)+\(\frac{1}{b}>=\frac{4}{a+b}\)
GIÚP MÌNH NHÉ !!!
THANKS !!!
Cho a > b > 0.Chứng minh rằng:\(\dfrac{a^{2014}-b^{2014}}{a^{2014}+b^{2014}}>\dfrac{a^{2013}-b^{2013}}{a^{2013}+b^{2013}}\)
1. Chứng minh rằng với mọi số thực không âm x, y ta luôn có: x3 + y3 > x2y + xy2
2. Tìm x sao cho giá trị của biểu thức 111(x-2) không nhỏ hơn 1998
3. Cho 2 số dương a và b , biết a > 2b: Chứng minh: \(\frac{a-b}{b}\) >1
4.Chứng minh bất đẳng thức sau : x2 + y2 + z2 + 14 > 4x - 2y -6z
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
Cho a > b > c > 0 và a2 + b2 + c2 =1
Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
a, Cho x,y là các số thực dương bất kỳ. Chứng minh \(\frac{1}{x+y}\) ≤ \(\frac{1}{4}\) ( \(\frac{1}{x}\) + \(\frac{1}{y}\) )
b, Cho a,b và c là các số thực không âm thỏa mãn a + b + c = 1
Chứng minh rằng \(\frac{ab}{c+1}\) + \(\frac{bc}{a+1}\) + \(\frac{ca}{b+1}\) ≤ \(\frac{1}{4}\)
1) Với ba số dường x, y, z thỏa mãn x + y + z = 1, chứng minh \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+zx}+\frac{1-z^2}{z+xy}\ge6\)
2) Cho các số thực a, b, c thỏa mãn điều kiện a \(\ge\) 3, ab \(\ge\) 6, abc \(\ge\) 6. Chứng minh rằng: \(a^2+b^2+c^2\ge14\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Cho a,b,c >0 , chứng minh rằng
a) \(\frac{a^3}{b}\ge a^2+ab-b^2\)
b)\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Chứng minh rằng : a5+b5 > a3b2+a2b3
Với a,b >0