Chứng minh từ \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\);b+d \(\ne\)0
ta có thể suy ra \(\dfrac{ac}{bd}\)=\(\dfrac{5a^2+7c^2}{5b^2+7d^2}\)
Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:\(\dfrac{a+b}{b}\)=\(\dfrac{c+d}{d}\);\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) và\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\).
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}+1=\dfrac{c}{d}+1=>\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}-1=\dfrac{c}{d}-1=>\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=cb=>ad+ac=cb+ac\)
\(=>a\left(c+d\right)=c\left(a+b\right)=>\dfrac{a}{c}=\dfrac{a+b}{c+d}=>\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)
hay \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) ta suy ra được các tỉ lệ thức sau:
a) \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\) (các mẫu số phải khác 0)
a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)
\( \Rightarrow ad = bc\) (luôn đúng)
\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)
Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)
Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\), (Các tỉ số đã viết đều có nghĩa). Chứng minh các tỉ lệ thức sau:
a) \(\dfrac{a}{b}=\dfrac{a+b}{c+d}\)
b)\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
Ta đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(a=b\times k\) ; \(c=d\times k\)
a) Ta có: \(\dfrac{a}{b}=\dfrac{b\times k}{d\times k}=\dfrac{b}{d}\) (1)
=> \(\dfrac{a+b}{c+d}=\dfrac{b\times k+b}{d\times k+d}=\dfrac{b\times\left(k+1\right)}{d\times\left(k+1\right)}=\dfrac{b}{d}\) (2)
Từ (1),(2) => đpcm
b)
\(\dfrac{a+b}{a}=\dfrac{b\times k+b}{b\times k}=\dfrac{b\times\left(k+1\right)}{b\times k}=\dfrac{k+1}{k}\) (1)
\(\dfrac{c+d}{c}=\dfrac{d\times k+d}{d\times k}=\dfrac{d\times\left(k+1\right)}{d\times k}=\dfrac{k+1}{k}\) (2)
Từ (1),(2) => đpcm
Chứng minh từ tỉ lệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\ne1\) ta có tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
mong mọi ng giải hộ
\(\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)
Lời giải:
$\frac{a+b}{a-b}=\frac{c+d}{c-d}$
$\Rightarrow (a+b)(c-d)=(a-b)(c+d)$
$\Rightarrow ac-ad+bc-bd=ac+ad-bc-bd$
$\Rightarrow 2ad=2bc$
$\Rightarrow ad=bc$
$\Rightarrow \frac{a}{b}=\frac{c}{d}$ (đpcm)
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\left(1\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng từ hệ thức\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) ta có hệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\).
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\) \(\left(1\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\), ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
\(\rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\rightarrow ac-ad+bc-bd=ac+ad-bc-bd\)
\(\rightarrow-ad+bc=ad-bc\)
\(\rightarrow bc+bc=ad+ad\)
\(\rightarrow2bc=2ad\)
\(\rightarrow bc=ad\)
\(\rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt!
Chứng minh rằng từ tỉ lệ thuận
\(\dfrac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}\)=\(\dfrac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}\)(k\(\varepsilon\)N) ta có thể suy ra được \(\dfrac{a}{b}\)= cộng trừ \(\dfrac{c}{d}\)
ĐKXĐ: \(b,d\ne0,c\ne\pm d\)
Áp dụng t/c dtsbn:
\(\dfrac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}=\dfrac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\dfrac{a^{2k}+b^{2k}+a^{2k}-b^{2k}}{c^{2k}+d^{2k}+c^{2k}-d^{2k}}=\dfrac{2a^{2k}}{2c^{2k}}=\dfrac{a^{2k}}{c^{2k}}\left(1\right)\)
\(\dfrac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}=\dfrac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\dfrac{a^{2k}+b^{2k}-a^{2k}+b^{2k}}{c^{2k}+d^{2k}-c^{2k}+d^{2k}}=\dfrac{2b^{2k}}{2d^{2k}}=\dfrac{b^{2k}}{d^{2k}}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a^{2k}}{c^{2k}}=\dfrac{b^{2k}}{d^{2k}}\Rightarrow\dfrac{a^{2k}}{b^{2k}}=\dfrac{c^{2k}}{d^{2k}}\Rightarrow\dfrac{a}{b}=\pm\dfrac{c}{d}\left(đpcm\right)\)
chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a#b ,c #d) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\) (1)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Ta có: \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).Theo tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)
Vì \(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)\(\Leftrightarrow\)\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)
Vậy \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)
Nếu bạn muốn làm cách cơ bản thì hãy làm theo mình.Còn nếu bạn học toán nâng cao thì làm theo cách bạn Linh hay hơn.Chúc bạn học tốt
Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Từ \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
2,Chứng minh rằng từ hệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\)(1)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\)(2)
Từ (1) và (2) ta có: \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a - b ≠ 0, c - d ≠ 0) ta có thể suy ra được \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Giúp e câu cuối cùng với ah, 23h58 là e phải nộp ròi ah
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\Rightarrow\dfrac{b}{a-b}=\dfrac{d}{c-d}\Rightarrow\dfrac{2b}{a-b}=\dfrac{2d}{c-d}\)
\(\Rightarrow\dfrac{2b}{a-b}+1=\dfrac{2d}{c-d}+1\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) (đpcm)
Chứng minh rằng \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) nếu:
a, \(\dfrac{a}{c}\) = \(\dfrac{a+b}{c+d}\)
b, \(\dfrac{b}{d}\) = \(\dfrac{a-b}{c-d}\)
a) \(\dfrac{a}{c}=\dfrac{a+b}{c+d}\)
=> a(c + d) = c(a + b)
=> ac + ad = ac + bc
=> ad = bc \(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
b) \(\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
=> b(c - d) = d(a - b)
=> bc - bd = ad - bd
=> bc = ad \(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)