Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 19:53

a. ĐKXĐ: \(x\ge-1\)

\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)

\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)

\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)

b.

\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)

c.

\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)

Phan Văn Hiếu
Xem chi tiết
pham thi thu trang
18 tháng 9 2017 lúc 21:56

x, y bạn lập phương lên 

bach nhac lam
Xem chi tiết
Diệu Huyền
30 tháng 11 2019 lúc 17:58

a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:

\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)

\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)

\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)

\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)

P/s: Không chắc cho lắm ạ.

Khách vãng lai đã xóa
Nameless
Xem chi tiết
cô giáo thông minh _123
25 tháng 1 2018 lúc 17:13

Cho P=x3+y33(x+y)+2017. Tính P khi x=33+22+3322và yy=317+122+317122

phạm minh tâm
25 tháng 1 2018 lúc 18:41

cứ lập phương cả x và y là được rồi cộng tổng lại được 2040

ARMY MINH NGỌC
Xem chi tiết
LIVERPOOL
4 tháng 7 2017 lúc 8:40

a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0

=>x=y=z thay vào pt 2 ta dc x=y=z=3

c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0

Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)

=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...

d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)

\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)

 <=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)

<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)

=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x

b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y

Trúc Giang
Xem chi tiết
Lê Thị Thục Hiền
18 tháng 6 2021 lúc 15:37

Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)

\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)

Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)

\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)

Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)

Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)

Vậy \(M=-20\sqrt{2}\)

missing you =
18 tháng 6 2021 lúc 15:42

theo bài ra

\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)

\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)

\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)

\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)

\(x^3=4\sqrt{2}-3.1x\)

\(x^3=4\sqrt{2}-3x\)

\(< =>x^3+3x-4\sqrt{2}=0\)

rồi làm y tương tự rồi thế vào M là ra

 

Nguyễn Dương Thành Đạt
Xem chi tiết
Akai Haruma
31 tháng 7 2021 lúc 10:32

1.

ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$

PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)

\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)

\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)

Akai Haruma
31 tháng 7 2021 lúc 10:33

2.

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$

$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}=0$

$\Leftrightarrow x=0$

Thử lại thấy thỏa mãn 

Vậy $x=0$

 

Akai Haruma
31 tháng 7 2021 lúc 10:44

3.

ĐKXĐ: $x\geq -1$

PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)

\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)

\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)

\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)

Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$

$\Rightarrow x^2+4034+5> 4x+4034$

$\Rightarrow \text{VP}> \text{VT}$

Do đó pt vô nghiệm.

 

Đinh Thị Ngọc Anh
Xem chi tiết
Hương Phùng
Xem chi tiết
Nguyễn Ngọc Linh
8 tháng 7 2021 lúc 9:20

a. \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=x-3\sqrt{x} +2\sqrt{x}-6=x-\sqrt{x}-6\)

b. \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)=x-y\)

c. \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right).\sqrt{3}\)

\(=\left(\dfrac{5}{\sqrt{3}}-\dfrac{7}{\sqrt{3}}+\sqrt{3}\right).\sqrt{3}=\dfrac{5}{3}-\dfrac{7}{3}+9=\dfrac{25}{3}\)

d. \(\left(1+\sqrt{3}-\sqrt{5}\right)\left(1+\sqrt{3}+\sqrt{5}\right)\)

\(=\left(1+\sqrt{3}\right)^2-5=1+2\sqrt{3}+3-5=2\sqrt{3}-1\)