Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Dương Thành Đạt

Giải pt

1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)

2)\(\sqrt{x}+\sqrt{x+1}=1\)

3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015

Akai Haruma
31 tháng 7 2021 lúc 10:32

1.

ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$

PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)

\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)

\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)

Akai Haruma
31 tháng 7 2021 lúc 10:33

2.

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$

$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}=0$

$\Leftrightarrow x=0$

Thử lại thấy thỏa mãn 

Vậy $x=0$

 

Akai Haruma
31 tháng 7 2021 lúc 10:44

3.

ĐKXĐ: $x\geq -1$

PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)

\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)

\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)

\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)

Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$

$\Rightarrow x^2+4034+5> 4x+4034$

$\Rightarrow \text{VP}> \text{VT}$

Do đó pt vô nghiệm.

 


Các câu hỏi tương tự
2012 SANG
Xem chi tiết
Lấp La Lấp Lánh
Xem chi tiết
Dark Killer
Xem chi tiết
Tiểu Anh
Xem chi tiết
Nguyễn Trọng Kiên
Xem chi tiết
kagamine rin len
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Trần Triệu Vy
Xem chi tiết
ILoveMath
Xem chi tiết