Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 14:47

a: Ta có: \(\sqrt{4x^2+4x+3}=8\)

\(\Leftrightarrow4x^2+4x+1+2-64=0\)

\(\Leftrightarrow4x^2+4x-61=0\)

\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)

 

Trần Ngọc Diệp
Xem chi tiết
Ngô Hải Nam
22 tháng 6 2023 lúc 21:02

\(\dfrac{\sqrt{5x+7}}{\sqrt{x+3}}=4\left(x\ge-\dfrac{7}{5};x\ne-3\right)\)

\(< =>\sqrt{5x+7}=4\sqrt{x+3}\)

\(< =>5x+7=16\left(x+3\right)\)

`<=>5x+7=16x+48`

`<=>5x-16x=48-7`

`<=>-11x=41`

`<=>x=-41/11(ktm)`

Vậy pt vô nghiệm

T . Anhh
22 tháng 6 2023 lúc 20:58

\(\dfrac{\sqrt{5x+7}}{\sqrt{x+3}}=4\) ĐK: \(x\ge-\dfrac{7}{5}\)

\(\Rightarrow\sqrt{5x+7}=4\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{\left(5x+7\right)^2}=4^2\sqrt{\left(x+3\right)^2}\)

\(\Leftrightarrow5x+7=16\left(x+3\right)\)

\(\Leftrightarrow5x+7=16x+48\)

\(\Leftrightarrow16x-5x=7-48\)

\(\Leftrightarrow11x=-41\)

\(\Leftrightarrow x=-\dfrac{41}{11}\) (loại)

Vậy \(S=\varnothing\).

Lê Kiều Trinh
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 11 2021 lúc 8:32

\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)

Lê Hương Giang
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 20:32

a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)

`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`

`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\) 

`b)sqrt{x-3}/sqrt{2x+1}=2`

ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)

`<=>x>=3`

`pt<=>sqrt{x-3}=2sqrt{2x+1}`

`<=>x-3=8x+4`

`<=>7x=7`

`<=>x=1(l)`

`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`

`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`

`<=>|x-1|+|x-2|=3`

`**x>=2`

`pt<=>x-1+x-2=3`

`<=>2x=6`

`<=>x=3(tm)`

`**x<=1`

`pt<=>1-x+2-x=3`

`<=>3-x=3`

`<=>x=0(tm)`

`**1<=x<=2`

`pt<=>x-1+2-x=3`

`<=>=-1=3` vô lý

Vậy `S={0,3}`

Mai Thị Thúy
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 17:34

ĐKXĐ: \(x>\dfrac{1}{5}\)

\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)

\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)

\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)

\(\Leftrightarrow\sqrt{5x-1}>1-3x\)

TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)

TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)

Kết luận: \(x>\dfrac{2}{9}\)

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 16:26

a.

ĐKXĐ: \(x\ne-1\)

\(x^2+5x+2=\left(2x+2\right)\sqrt{x^2+x+2}\)

\(\Leftrightarrow\left(x^2+x+2\right)-2\left(x+1\right)\sqrt{x^2+x+2}+4x=0\)

Đặt \(\sqrt{x^2+x+2}=t>0\)

\(\Rightarrow t^2-2\left(x+1\right)t+4x=0\)

\(\Leftrightarrow t\left(t-2x\right)-2\left(t-2x\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\\\sqrt{x^2+x+2}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\\x^2+x+2=4x^2\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 16:28

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-5x+14-4\sqrt{x+1}=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(x+1-4\sqrt{x+1}+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

callme_lee06
Xem chi tiết
Ngọc Hoàng Khương Nguyễn
Xem chi tiết
missing you =
26 tháng 1 2022 lúc 16:17

\(a,\left(đk:x\ge0\right)\) 

\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)

\(x>0\)

\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)

\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)

\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)

\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)

 

Xyz OLM
26 tháng 1 2022 lúc 16:16

a) ĐKXĐ : \(x\ge0\)

PT <=> \(x+3-4\sqrt{x}\sqrt{x+3}+4x=0\)

<=> \(\left(\sqrt{x+3}-2\sqrt{x}\right)^2=0\)

<=> \(\sqrt{x+3}=2\sqrt{x}\)

<=> \(x+3=4x\)

<=> x = 1

Vậy x = 1 là nghiệm phương trình

Đăng
Xem chi tiết
2611
13 tháng 5 2023 lúc 21:17

`{(2\sqrt{5x-1}-5/[|y+3|]=-1),(3\sqrt{5x-1}+7/[|y+3|]=13):}`     `ĐK: x >= 1/5;y ne -3`

Đặt `\sqrt{5x-1}=a;1/[|y+3|]=b` khi đó ta có:

    `{(2a-5b=-1),(3a+7b=13):}`

`<=>{(6a-15b=-3),(6a+14b=26):}`

`<=>{(29b=29),(2a-5b=-1):}`

`<=>{(b=1),(2a-5.1=-1):}`

`<=>{(a=2),(b=1):}`

  `=>{(\sqrt{5x-1}=2),(1/[|y+3|]=1):}`

`<=>{(5x-1=2),([(y+3=1),(y+3=-1):}):}`

`<=>{(x=3/5),([(y=-2),(y=-4):}):}`     (t/m)