ĐKXĐ: \(x>\dfrac{1}{5}\)
\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)
\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)
\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)
\(\Leftrightarrow\sqrt{5x-1}>1-3x\)
TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)
TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)
Kết luận: \(x>\dfrac{2}{9}\)