Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Quang Minh
[HOC24 x OLM] KỶ NGUYÊN MỚI CỦA GIẤY CHỨNG NHẬN - SẴN SÀNG BỨT PHÁ KIẾN THỨC!🚨🚨🚨 ĐANG DIỄN RA! 🚨🚨🚨Đồng hồ đang đếm ngược, trái tim bạn đã sẵn sàng chưa? Cuộc chiến trí tuệ nảy lửa nhất hè này sắp sửa bắt đầu! 🔥⏰ Thời gian: 20h - 21h ngày 23/7/2024🔗 Link tham gia Quizizz: https://quizizz.com/join?gc267726Đừng bỏ lỡ cơ hội:- Tham gia sự kiện trực tuyến đặc biệt này để giải mã các bí ẩn về giấy chứng nhận.- Giành lấy cơ hội nhận những giải thưởng siêu to khổng lồ và quyền lợi đặc biệt từ H...
Đọc tiếp

Những câu hỏi liên quan
Nguyễn Thuỳ Chi
Xem chi tiết
Ngố ngây ngô
Xem chi tiết
Nguyễn Trọng Chiến
22 tháng 2 2021 lúc 21:42

Bài 129:

ĐKXĐ: \(x^2-y+1\ge0\)\(\left\{{}\begin{matrix}4x^2-2x+y^2+y-4xy=0\left(1\right)\\x^2-x+y=\left(y-x+3\right)\sqrt{x^2-y+1}\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow\left(2x-y\right)^2-\left(2x-y\right)=0\Leftrightarrow\left(2x-y\right)\left(2x-y-1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=2x-1\end{matrix}\right.\)

Nếu y=2x Thay vào (2) ta được: 

\(\Rightarrow x^2-x+2x=\left(2x-x+3\right)\sqrt{x^2-2x+1}\Leftrightarrow x^2+x=\left(x+3\right)\left|x-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=\left(x+3\right)\left(1-x\right)\left(x< 1\right)\left(3\right)\\x^2+x=\left(x+3\right)\left(x-1\right)\left(x\ge1\right)\left(4\right)\end{matrix}\right.\) 

Từ (3) \(\Rightarrow x^2+x=x-x^2+3-3x\Leftrightarrow2x^2+3x-3=0\) \(\Leftrightarrow x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{3}{2}=0\Leftrightarrow\left(x-\dfrac{3}{4}\right)^2=\dfrac{33}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{4}\left(L\right)\\x=\dfrac{3-\sqrt{33}}{4}\left(TM\right)\end{matrix}\right.\)\(\Rightarrow y=\) \(2\cdot\left(\dfrac{3-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\)

Từ (4) \(\Rightarrow x^2+x=x^2-x+3x-3\Leftrightarrow-x=-3\Leftrightarrow x=3\left(TM\right)\)\(\Rightarrow y=6\)

Nếu y=2x+1 Thay vào (2) ta được: 

\(\Rightarrow x^2-x+2x+1=\left(2x+1-x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x+1=\left(x+4\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.;x\ge-4\right)\)

\(\Rightarrow x^2+x+1-\left(x+4\right)\sqrt{x^2-2x}=0\Leftrightarrow2x^2+2x+2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}+4x-4\sqrt{x^2-2x}=2\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{2}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{2}\left(6\right)\end{matrix}\right.\)

Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2-\sqrt{2}\right)^2-2x\left(2-\sqrt{2}\right)\Leftrightarrow2x\left(2-\sqrt{2}-2\right)=4+2-4\sqrt{2}\Leftrightarrow-2\sqrt{2}x=6-4\sqrt{2}\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-3\sqrt{2}}{2}+2\right)+1=-3\sqrt{2}+5\)

Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2+\sqrt{2}\right)^2+2x\left(2+\sqrt{2}\right)\Leftrightarrow2x\left(2+\sqrt{2}-2\right)=6+4\sqrt{2}\Leftrightarrow2\sqrt{2}x=6+4\sqrt{2}\Leftrightarrow x=\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\)

 \(\Rightarrow y=2\left(\dfrac{3\sqrt{2}}{2}+2\right)+1=3\sqrt{2}+5\)

Vậy...

Quoc Tran Anh Le
Xem chi tiết
PIKACHU
23 tháng 2 2021 lúc 20:39

c131-136 nhỏ ko đọc đc

 

Quoc Tran Anh Le
Xem chi tiết
Nguyễn Trọng Chiến
21 tháng 2 2021 lúc 12:05

1: ĐKXĐ: a,b>0, a\(\ne b\)

\(\Rightarrow Q=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(a\sqrt{a}+b\sqrt{b}\right)}+\dfrac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}=\dfrac{a\sqrt{a}-3a\sqrt{b}+3b\sqrt{a}-b\sqrt{b}+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) \(=\dfrac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{1}{\sqrt{a}+\sqrt{b}}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=0\) 

\(\Rightarrow Q\) ko phụ thuộc vào a,b Vậy...

Nguyễn Trọng Chiến
21 tháng 2 2021 lúc 12:30

2: Ta có \(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\) 

\(\Rightarrow P=\dfrac{x+y}{xy}\cdot\sqrt{x^2y^2+\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}}\ge\dfrac{2\sqrt{xy}}{xy}\cdot\sqrt{17}\cdot\sqrt[34]{\dfrac{x^2y^2}{16^{16}}}=\sqrt{17}\cdot\dfrac{2}{\sqrt{xy}}\cdot\sqrt[17]{\dfrac{xy}{16^8}}\) \(=\sqrt{17}\cdot\sqrt[17]{\dfrac{2^{17}}{\sqrt{x^{17}y^{17}}}\cdot\dfrac{\sqrt{x^2y^2}}{2^{32}}=\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{x^{15}y^{15}}\cdot2^{15}}}\ge\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{\dfrac{1}{4^{15}}}\cdot2^{15}}}=\sqrt{ }17}\)

Dấu  = xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\) Vậy...

NMĐ~NTTT
21 tháng 2 2021 lúc 11:39

toán mấy đấy aj??

Quoc Tran Anh Le
Xem chi tiết
minh nguyet
20 tháng 2 2021 lúc 16:05

Việc bây giờ có những bộ phận anti fan quá khích lập group anti đã không còn quá xa lạ với mọi người. Ở đây mình muốn nói đến việc anti bây giờ đôi khi không cần ghét bất cứ 1 người nổi tiếng, họ cũng lập gr anti cả những người không nổi tiếng như trên ảnh trong khi họ không làm gì sai cả. Không chỉ là những gr anti, họ còn nói những từ ngữ, chế ảnh, hành động không mấy lành mạnh. Những việc làm quá khích như vậy ảnh hưởng lớn đến tinh thần, hình ảnh của các bạn 2k5 nói chung và khiến cho các bạn nhỏ tuổi có cái nhìn không tốt. Chúng ta cần lên tiếng phản đối những bộ phận anti không lành mạnh và luôn xây dựng cho mình hình ảnh đẹp để chứng minh những điều họ làm là sai 

P/s viết ''ngựa ngựa'' 1 tí ko biết có sao ko :)))

Hà Trang
25 tháng 5 2021 lúc 8:08

Việc ANTI bây h đã là 1 việc ko quá xa lại nữa r . Nhiều người còn tạo ra 1 nhóm anit . Có những người chỉ cần làm 1 việc nhỏ sai là gây ra tranh luận cho cả MXH r dẫn đến anti nhưng có những người nổi tiếng ko làm j sai nhưng những ai là fan đối thủ cx lập ra group anti chỉ để phần thắng về đội họ . Làm những người bị anti bị ảnh hưởng từ ngoài đến bên trong !!!

Quoc Tran Anh Le
Xem chi tiết
minh nguyet
25 tháng 2 2021 lúc 20:15

Mọi cố gắng đều không bao giờ vô nghĩa, cố gắng học, cố gắng làm, tuy sự cố gắng có thể chưa nhiều nhưng ''tích tiểu thành đại'' một lúc nào đó nó sẽ thành công. Từ bức ảnh này có thể thấy, mỗi con số vô cùng nhỏ nhưng số mũ lại rất lớn, làm cho kết quả cũng lớn theo. Số mũ này còn tượng trưng cho 365 ngày trong năm, mỗi ngày là con số kia, sau 1 năm, kết quả đã lớn đến nhường nào. Đôi khi trong quá trình cố gắng, gặp khó khăn, nếu chúng ta từ bỏ, thì cố gắng từ trước đến này cũng bằng không. Bản thân mình trước kia cũng từng là một đứa nghiện game, truyện tranh đến mức bị mẹ dọa cho nghỉ học, bản thân mình lúc đó cũng chưa nghĩ gì nhiều, nhưng thấy kết quả học chưa tốt, bố mẹ lo lắng, mình đã bỏ qua tất cả, cố gắng học từng chút một, có thể là giờ cái sự cố gắng của mình nó chưa lớn như người khác nhưng mình chưa từ bỏ nó một lần nào, mình hi vọng sẽ có một ngày nào mình thành công trên con đường mình đã chọn. Nói chung lại, cố gắng sẽ khiến bản thân ta thay đổi, thành công sẽ đến gần hơn 

P/s lại viết ''ngựa ngựa'' đây :)))

 

Cuộc thi có vẻ rất vui và thú vị :^

Hồng Quang
25 tháng 2 2021 lúc 20:18

:3 hi vọng cuộc thi sẽ mở rộng và có nhiều môn học hơn 

Quoc Tran Anh Le
Xem chi tiết
Hồng Quang
22 tháng 2 2021 lúc 10:07

Bài 286: Bất đẳng thức neibizt khá nổi tiếng :D 

Bđt <=> \(\dfrac{a}{b+c}+\dfrac{1}{2}+\dfrac{b}{c+a}+\dfrac{1}{2}+\dfrac{c}{a+b}+\dfrac{1}{2}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(2a+2b+2c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\right)\ge9\) ( Có thể đơn giản hóa bất đẳng thức bằng việc đặt biến phụ )

Đặt: \(\left\{{}\begin{matrix}x=b+c\\y=c+a\\z=a+b\end{matrix}\right.\) khi đó ta có: \(\left\{{}\begin{matrix}a=\dfrac{y+z-x}{2}\\b=\dfrac{z+x-y}{2}\\c=\dfrac{x+y-z}{2}\end{matrix}\right.\) Bất đẳng thức trở thành: \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) ( luôn đúng theo AM-GM )

Vậy bất đẳng thức đã được chứng minh. Dấu "=" xảy ra tại a=b=c

Hồng Phúc
22 tháng 2 2021 lúc 12:25

C286.(Cách khác)

Áp dụng BĐT BSC và BĐT \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\):

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\dfrac{2}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

Viêt Thanh Nguyễn Hoàn...
22 tháng 2 2021 lúc 18:20

undefined

Quoc Tran Anh Le
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 22:51

Còn tưởng giải bài tập cơ XD

Lê Thu Dương
28 tháng 2 2021 lúc 22:52

Eo AD có tâm quá điii..

HT2k02
1 tháng 3 2021 lúc 17:06

Không có mô tả ảnh.

Ngố ngây ngô
Xem chi tiết
Ngố ngây ngô
Xem chi tiết
Nguyễn Trọng Chiến
20 tháng 2 2021 lúc 9:04

Ta cần chứng minh \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\ge1\)

\(\Leftrightarrow\dfrac{a^3}{ab+b^2}+\dfrac{b^3}{ab+a^2}\ge1\) \(\Leftrightarrow\dfrac{a^3}{b\cdot\left(a+b\right)}+\dfrac{b^3}{a\left(a+b\right)}\ge1\) \(\Leftrightarrow\dfrac{a^4+b^4}{ab\left(a+b\right)}\ge1\Leftrightarrow\dfrac{a^4+b^4}{a+b}\ge1\) 

Áp dụng bđt Cô-si vào 2 số a,b>0 :

 \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^4+b^4\ge2a^2b^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2\cdot\left(a^2+b^2\right)\ge\left(a+b\right)^2\\2\cdot\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\end{matrix}\right.\) \(\Rightarrow a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(a+b\right)^4}{8}\)

\(\Rightarrow\dfrac{a^4+b^4}{a+b}\ge\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{\left(2\sqrt{ab}\right)^3}{8}=1\) 

Dấu bằng xảy ra \(\Leftrightarrow a=b=1\) Vậy...

trương khoa
20 tháng 2 2021 lúc 9:22

Ta có:ab=1⇔a=\(\dfrac{1}{b}\)

Thay a=\(\dfrac{1}{b}\) vào \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\) có

\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^3}{1+\left(\dfrac{1}{b}\right)^2}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^3}{\dfrac{b^2+1}{b^2}}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^5}{1+b^2}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3+b^5}{1+b^2}\)=\(\dfrac{\dfrac{1+b^8}{b^3}}{1+b^2}\)

Mà b là số thực dương nên \(\dfrac{\dfrac{1+b^8}{b^3}}{1+b^2}\)≥1

vậy \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\)≥1

✿✿❑ĐạT̐®ŋɢย❐✿✿
20 tháng 2 2021 lúc 10:24

Theo BĐT Cô - si có : \(a+b\ge2\sqrt{ab}=2\Rightarrow\left(a+b\right)^3\ge8\)

Áp dụng BĐT Svac-xơ ta có :

\(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}=\dfrac{a^4}{a+ab^2}+\dfrac{b^4}{b+a^2b}\)

\(\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+ab.\left(a+b\right)}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{a+b+a+b}\) \(=\dfrac{\dfrac{\left(a+b\right)^4}{4}}{2.\left(a+b\right)}=\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{8}{8}=1\)

Dấu "=" xảy ra khi \(a=b=1\)