Violympic toán 9

Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 200.000đ nhé!

--------------------------------------------

[Toán.C125+126 _ 22.2.2021]

undefined

[Toán.C127 _ 22.2.2021]

undefined

Hồng Quang
22 tháng 2 lúc 10:07

Bài 286: Bất đẳng thức neibizt khá nổi tiếng :D 

Bđt <=> \(\dfrac{a}{b+c}+\dfrac{1}{2}+\dfrac{b}{c+a}+\dfrac{1}{2}+\dfrac{c}{a+b}+\dfrac{1}{2}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(2a+2b+2c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\right)\ge9\) ( Có thể đơn giản hóa bất đẳng thức bằng việc đặt biến phụ )

Đặt: \(\left\{{}\begin{matrix}x=b+c\\y=c+a\\z=a+b\end{matrix}\right.\) khi đó ta có: \(\left\{{}\begin{matrix}a=\dfrac{y+z-x}{2}\\b=\dfrac{z+x-y}{2}\\c=\dfrac{x+y-z}{2}\end{matrix}\right.\) Bất đẳng thức trở thành: \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) ( luôn đúng theo AM-GM )

Vậy bất đẳng thức đã được chứng minh. Dấu "=" xảy ra tại a=b=c

Bình luận (0)
Hồng Phúc
22 tháng 2 lúc 12:25

C286.(Cách khác)

Áp dụng BĐT BSC và BĐT \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\):

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\dfrac{2}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

Bình luận (0)
Viêt Thanh Nguyễn Hoàng
22 tháng 2 lúc 18:20

undefined

Bình luận (1)
Hồng Phúc
23 tháng 2 lúc 18:07

ĐK: \(y\left(2x-y\right)\ge0;5y^2-4x^2\ge0;x\le2;y\ge-1\)

\(\left\{{}\begin{matrix}3\sqrt{y^3\left(2x-y\right)}+\sqrt{x^2\left(5y^2-4x^2\right)}=4y^2\left(1\right)\\\sqrt{2-x}+\sqrt{y+1}=x+y^2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2.\sqrt{3}y.\sqrt{3\left(2xy-y^2\right)}+2.x.\sqrt{5y^2-4x^2}=8y^2\)

\(\Leftrightarrow\left(\sqrt{3}y-\sqrt{6xy-3y^2}\right)^2+\left(x-\sqrt{5y^2-4x^2}\right)^2+3\left(x-y\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}y=\sqrt{6xy-3y^2}\\x=\sqrt{5y^2-4x^2}\\x=y\end{matrix}\right.\Leftrightarrow x=y\)

Khi đó \(\left(2\right)\Leftrightarrow\sqrt{2-x}+\sqrt{x+1}=x+x^2\)

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Toán.C116 _ 20.2.2021]

undefined

[Toán.C117+118 _ 20.2.2021]

undefined

 

Ngố ngây ngô

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Toán.C114 _ 20.2.2021]

undefined

Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 200.000đ nhé!

--------------------------------------------

[Toán.C119 _ 21.2.2021]

undefined

[Toán.C120 _ 21.2.2021]

undefined

[Toán.C121 _ 21.2.2021]

undefined

[Toán.C122 _ 21.2.2021]

undefined

Ngố ngây ngô

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Toán.C118 _ 20.2.2021]

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN