[CUỘC THI TRÍ TUỆ VICE]
Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>
Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!
--------------------------------------------
[Toán.C114 _ 20.2.2021]
Ta cần chứng minh \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\ge1\)
\(\Leftrightarrow\dfrac{a^3}{ab+b^2}+\dfrac{b^3}{ab+a^2}\ge1\) \(\Leftrightarrow\dfrac{a^3}{b\cdot\left(a+b\right)}+\dfrac{b^3}{a\left(a+b\right)}\ge1\) \(\Leftrightarrow\dfrac{a^4+b^4}{ab\left(a+b\right)}\ge1\Leftrightarrow\dfrac{a^4+b^4}{a+b}\ge1\)
Áp dụng bđt Cô-si vào 2 số a,b>0 :
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^4+b^4\ge2a^2b^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2\cdot\left(a^2+b^2\right)\ge\left(a+b\right)^2\\2\cdot\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\end{matrix}\right.\) \(\Rightarrow a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(a+b\right)^4}{8}\)
\(\Rightarrow\dfrac{a^4+b^4}{a+b}\ge\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{\left(2\sqrt{ab}\right)^3}{8}=1\)
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\) Vậy...
Ta có:ab=1⇔a=\(\dfrac{1}{b}\)
Thay a=\(\dfrac{1}{b}\) vào \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\) có
\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^3}{1+\left(\dfrac{1}{b}\right)^2}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^3}{\dfrac{b^2+1}{b^2}}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^5}{1+b^2}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3+b^5}{1+b^2}\)=\(\dfrac{\dfrac{1+b^8}{b^3}}{1+b^2}\)
Mà b là số thực dương nên \(\dfrac{\dfrac{1+b^8}{b^3}}{1+b^2}\)≥1
vậy \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\)≥1
Theo BĐT Cô - si có : \(a+b\ge2\sqrt{ab}=2\Rightarrow\left(a+b\right)^3\ge8\)
Áp dụng BĐT Svac-xơ ta có :
\(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}=\dfrac{a^4}{a+ab^2}+\dfrac{b^4}{b+a^2b}\)
\(\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+ab.\left(a+b\right)}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{a+b+a+b}\) \(=\dfrac{\dfrac{\left(a+b\right)^4}{4}}{2.\left(a+b\right)}=\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{8}{8}=1\)
Dấu "=" xảy ra khi \(a=b=1\)
C114 (Cách khác)
Áp dụng BĐT Cosi:
\(\dfrac{a^3}{1+b^2}+\dfrac{\left(b^2+1\right)a^3}{4}\ge a^3\Rightarrow\dfrac{a^3}{1+b^2}\ge a^3-\dfrac{\left(b^2+1\right)a^3}{4}=\dfrac{3a^3-a^3b^2}{4}\)
Tương tự \(\dfrac{b^3}{1+a^2}\ge\dfrac{3b^3-a^2b^3}{4}\)
\(\Rightarrow\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\ge\dfrac{3a^3-a^3b^2}{4}+\dfrac{3b^3-a^2b^3}{4}\)
\(=\dfrac{3\left(a+b\right)\left(a^2+b^2-ab\right)-a^2b^2\left(a+b\right)}{4}\)
\(=\dfrac{\left(a+b\right)\left(3a^2+3b^2-3ab-a^2b^2\right)}{4}\)
\(=\dfrac{\left(a+b\right)\left(3a^2+3b^2-4\right)}{4}\ge\dfrac{2\sqrt{ab}.\left(6ab-4\right)}{4}=1\)