Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
M r . V ô D a n h
24 tháng 6 2021 lúc 20:55

không biết ai là quán quân nhỉ ?

Kậu...chủ...nhỏ...!!!
24 tháng 6 2021 lúc 20:55

chưa dám chơi vì chơi ngu tạm thời gác qua 1 bên :D

chúc 11 bn đó thi tốtvui

Quoc Tran Anh Le
Xem chi tiết
Ngố ngây ngô
7 tháng 6 2021 lúc 21:09

Không sao, 23h59' nộp vẫn còn kịp :v

Mà nhớ canh kĩ nha qua 0h00 thì có 100 điểm cũng k nhận đou :v

Lê Huy Tường
7 tháng 6 2021 lúc 19:52

sao em lại chỉ có 13đ nhỉ(sốc)

Ħäńᾑïě🧡♏
7 tháng 6 2021 lúc 20:02

Thôi e chả đòi hỏi nhiều bt sức của mik ko qua đc vòng 1 rùi

Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
13 tháng 5 2021 lúc 6:50

Ad ơi báo TT có đăng lời giải rồi, nhưng trong lời giải họ sửa từ \(\sqrt{x^2+7x-1}\) thành \(\sqrt{x^2+7x-4}\).

undefined

linhh
12 tháng 5 2021 lúc 22:40

Nhìn được chắc mù đấy ạ 😅

💢Sosuke💢
12 tháng 5 2021 lúc 23:33

Vẫn đang làm...

Quoc Tran Anh Le
Xem chi tiết
Sad boy
31 tháng 7 2021 lúc 17:07

không coá văn nhỉ :D ? =((

missing you =
31 tháng 7 2021 lúc 18:27

2. \(\dfrac{R1}{R2}=\dfrac{l1}{l2}=\dfrac{42}{l2}=>R1=\dfrac{42.R2}{l2}\)

\(U2=5U1=>I2.R2=5I1.R1\)

\(< =>R2=5R1=>R2=\dfrac{5.42.R2}{l2}=>l2=210m\)

missing you =
31 tháng 7 2021 lúc 19:20

1,

\(R1=R2\)(R1: điện trở đồng , R2: điện trở nhôm)

\(=>\dfrac{p1.l1}{S1}=\dfrac{p2.l2}{S2}\) mà chiều dài ko đổi

\(=>\dfrac{p1}{S1}=\dfrac{p2}{S2}=>\)\(S2=\dfrac{S1.p2}{p1}=\dfrac{0,0002.2,8.10^{-8}}{1,7.10^{-8}}\approx3,3.10^{-4}m^2\)

lại có \(V=S.h=>\dfrac{m}{D}=S.h=>m=S.h.D\)

\(=>\dfrac{m1}{m2}=\dfrac{S1.D1.h}{S2.D2h}=\dfrac{8900.0,0002}{2700.3,3.10^{-4}}=2\)(lần)

\(=>m1=2m2\)\(< =>m2=\dfrac{1}{2}m1\)=>khối lượng dây giảm 2 lần

 

Trần Văn Đạt
Xem chi tiết
nguyen cao tung
19 tháng 1 2016 lúc 11:53

tất cả là người đứng sau

HT.Phong (9A5)
Xem chi tiết
⭐Hannie⭐
31 tháng 10 2023 lúc 12:17

loading...

Không mấy cho lên 8,5 cho đẹp đk ní=))

@DanHee
31 tháng 10 2023 lúc 14:47

sai hẳn 4 câu :0

selfish.
31 tháng 10 2023 lúc 14:59

Ờm...không biết sai câu nào nhưng mà thấy đề sai rồi đó (?) câu 15 có 2 đáp án giống nhau với lại hình như ai cũng được 8.1? loading...

Quoc Tran Anh Le
Xem chi tiết
Trần Minh Hoàng
4 tháng 3 2021 lúc 19:49

Bài nào đó k ghi số nên không bt gọi ntn:

Chuẩn hóa x + y + z = 3. Ta cần cm \(x^2y+y^2z+z^2x+xyz\le4\).

Giả sử \(z=mid\left\{x,y,z\right\}\Rightarrow\left(x-z\right)\left(y-z\right)\le0\)

\(\Leftrightarrow xy+z^2\le xz+yz\)

\(\Leftrightarrow x^2y+xz^2\le x^2z+xyz\).

Từ đó \(x^2y+y^2z+z^2x+xyz\le x^2z+xyz+y^2z+xyz=z\left(x+y\right)^2\le\dfrac{\dfrac{\left(2z+x+y+x+y\right)^3}{27}}{2}=4\).

 

Hồng Phúc
4 tháng 3 2021 lúc 19:53

Câu cuối:

Áp dụng BĐT BSC:

\(\dfrac{a}{\sqrt{a^2+b+c}}=\sqrt{\dfrac{a^2}{a^2+b+c}}=\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a^2+b+c\right)\left(1+b+c\right)}}\le\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a+b+c\right)^2}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự \(\dfrac{b}{\sqrt{b^2+c+a}}=\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\)\(\dfrac{c}{\sqrt{c^2+a+b}}=\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Khi đó \(VT\le\Sigma\left(\dfrac{a}{a+b+c}.\sqrt{1+b+c}\right)\)

Giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev với bộ \(\dfrac{a}{a+b+c};\dfrac{b}{a+b+c};\dfrac{c}{a+b+c}\) và \(\sqrt{1+b+c};\sqrt{1+c+a};\sqrt{1+a+b}\):

\(VT\le\dfrac{1}{3}\Sigma\dfrac{a}{a+b+c}.\Sigma\sqrt{1+a+b}=\dfrac{\Sigma\sqrt{1+a+b}}{3}\)

\(\le\dfrac{\sqrt{3\left(3+2a+2b+2c\right)}}{3}\)

\(\le\dfrac{\sqrt{9+6\sqrt{3\left(a^2+b^2+c^2\right)}}}{3}=\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Nguyễn Trọng Chiến
4 tháng 3 2021 lúc 19:54

Bài 1 GPT: \(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+1}\)(1) ĐKXĐ: \(\forall x\in R\)

(1) \(\Leftrightarrow x^2-x-1+2018\sqrt{2x^2+1}-2018\sqrt{x^2+x+1}=0\)

\(\Rightarrow x^2-x-1+2018\cdot\dfrac{\left(\sqrt{2x^2+1}-\sqrt{x^2+x+2}\right)\left(\sqrt{2x^2+1}+\sqrt{x^2+x+2}\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)

\(\Leftrightarrow x^2-x-1+2018\cdot\dfrac{\left(x^2-x-1\right)}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}=0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(1+\dfrac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}\right)=0\)

\(\Leftrightarrow x^2-x-1=0\) vì \(1+\dfrac{2018}{\sqrt{2x^2+1}+\sqrt{x^2+x+2}}>1>0\forall x\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{5}{4}=0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) Vậy...

Quoc Tran Anh Le
Xem chi tiết
Hồng Phúc
6 tháng 3 2021 lúc 5:44

C280:

Áp dụng BĐT AM-GM và BĐT BSC:

\(\dfrac{1}{\sqrt{x+3y}}+\sqrt{x+3y}\ge2\Rightarrow\dfrac{1}{\sqrt{x+3y}}\ge2-\sqrt{x+3y}\)

\(\dfrac{1}{\sqrt{y+3z}}+\sqrt{y+3z}\ge2\Rightarrow\dfrac{1}{\sqrt{y+3z}}\ge2-\sqrt{y+3z}\)

\(\dfrac{1}{\sqrt{z+3x}}+\sqrt{z+3x}\ge2\Rightarrow\dfrac{1}{\sqrt{z+3x}}\ge2-\sqrt{z+3x}\)

\(\Rightarrow P=\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\)

\(\ge6-\left(\sqrt{x+3y}+\sqrt{y+3z}+\sqrt{z+3x}\right)\)

\(\ge6-\sqrt{3\left(x+3y+y+3z+z+3x\right)}\)

\(=6-\sqrt{12\left(x+y+z\right)}=3\)

\(minP=3\Leftrightarrow a=b=c=\dfrac{1}{4}\)

 Mashiro Shiina
6 tháng 3 2021 lúc 10:06

Bài 7) 

\(bđt\Leftrightarrow4\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)+6abc\)\(\Leftrightarrow ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\ge6abc\)

\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

(Đúng theo Cô Si)

"=" khi a=b=c=1

Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 14:09

281:

Ta có:\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\dfrac{1}{\sqrt{a^3+b}}\le\dfrac{1}{\sqrt{2\sqrt{a^3b}}}=\dfrac{1}{\sqrt{2a}\cdot\sqrt[4]{ab}}\le\dfrac{1}{2\sqrt{2a}}\cdot\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)=\dfrac{1}{2\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\right)\le\dfrac{1}{2\sqrt{2}}\cdot\left[\dfrac{1}{a}+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]=\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{a}+\dfrac{1}{2a}+\dfrac{1}{2b}\right)\) Chứng minh tương tự:

\(\dfrac{1}{\sqrt{b^3+c}}\le\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{b}+\dfrac{1}{2b}+\dfrac{1}{2c}\right);\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{1}{2\sqrt{2}}\cdot\left(\dfrac{1}{c}+\dfrac{1}{2c}+\dfrac{1}{2a}\right)\)\(\Rightarrow\dfrac{1}{\sqrt{a^3+b}}+\dfrac{1}{\sqrt{b^3+c}}+\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{1}{a}+\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{b}+\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{c}+\dfrac{1}{2c}+\dfrac{1}{2a}\right)=\dfrac{1}{2\sqrt{2}}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{3}{\sqrt{2}}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

Quoc Tran Anh Le
Xem chi tiết
Justasecond
3 tháng 3 2021 lúc 19:57
 Mashiro Shiina
3 tháng 3 2021 lúc 20:04

Câu 266 là >= chứ nhỉ?

Justasecond
3 tháng 3 2021 lúc 20:10

Câu 5 (có chữ HẾT (.❛ ᴗ ❛.) )

Đặt \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

Ta có:

\(a\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)

Hoàn toàn tương tự, ta có: \(\left\{{}\begin{matrix}b\sqrt{c^3+1}\ge b\\c\sqrt{a^3+1}\ge c\end{matrix}\right.\)

Cộng vế: \(P\ge a+b+c=3\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{1}{2}a\left(b^2+2\right)=\dfrac{1}{2}ab^2+a\)

Tương tự: \(b\sqrt{c^3+1}\le\dfrac{1}{2}bc^2+b\) ; \(c\sqrt{a^3+1}\le\dfrac{1}{2}ca^2+c\)

Cộng vế: \(P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)

Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ac+ab\Rightarrow ca^2+bc^2\le ac^2+abc\)

\(\Rightarrow ab^2+bc^2+ca^2\le ab^2+ac^2+abc\le ab^2+ac^2+2abc=a\left(b+c\right)^2\)

\(\Rightarrow ab^2+bc^2+ca^2\le\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\)

\(\Rightarrow P\le\dfrac{1}{2}.4+3=5\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị