Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hhhhhhhhhhh
Xem chi tiết
TV Cuber
8 tháng 4 2022 lúc 12:27

\(3x-5=5+3x=>-5=5\)

==>C, vô nghiệm

YangSu
8 tháng 4 2022 lúc 12:27

\(3x-5=5+3x\)

\(\Leftrightarrow3x-5-5-3x=0\)

\(\Leftrightarrow-10=0\left(VL\right)\)

Chọn C.vô nghiệm

Kaito Kid
8 tháng 4 2022 lúc 12:28

C

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:03

Bất phương trình 2x+y > 3 là bất phương trình bậc nhất hai ẩn và có vô số nghiệm.

Chọn C.

🙂T😃r😄a😆n😂g🤣
Xem chi tiết
Akai Haruma
5 tháng 4 2021 lúc 12:44

Lời giải:

PT $\Leftrightarrow x(m-2)=m^2-4$

a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$

$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$

$\Leftrightarrow (m-2)(m+2-1)=0$

$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$

b) Để pt có nghiệm thì:

\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$

Vậy pt có nghiệm với mọi $m\in\mathbb{R}$

c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.

Đỗ Anh Quân
Xem chi tiết
Yeutoanhoc
10 tháng 5 2021 lúc 20:55

C.2 nghiệm

Dân Chơi Đất Bắc=))))
10 tháng 5 2021 lúc 20:58

C.2 nghiệm nha

Phương trình: 4x−3=∣−5x+8∣ có bao nhiêu nghiệm?

A. Vô nghiệm

B. Có 1 nghiệm
C. Có 2 nghiệm

                                      Hok tốt nhoa

 

Minh Hoàng Nguyễn
Xem chi tiết
Yeutoanhoc
27 tháng 2 2021 lúc 18:51

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 18:54

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1

Kim Tuyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 8:10

a: Để hệ phương trình vô nghiệm thì

\(\dfrac{1}{-2}=\dfrac{-m}{2}< >\dfrac{4}{4m}=\dfrac{1}{m}\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{m}{2}\\-m^2< >2\left(luônđúng\right)\end{matrix}\right.\Leftrightarrow m=1\)

b: Để hệ phương trình có 1 nghiệm duy nhất thì \(\dfrac{1}{-2}< >\dfrac{-m}{2}\)

=>\(\dfrac{1}{2}\ne\dfrac{m}{2}\)

=>\(m\ne1\)

c: Để hệ có vô số nghiệm thì \(\dfrac{1}{-2}=\dfrac{-m}{2}=\dfrac{4}{4m}\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{m}{2}\\\dfrac{-m}{2}=\dfrac{1}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m^2=-2\left(vôlý\right)\end{matrix}\right.\)

=>\(m\in\varnothing\)

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:23

a.

- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

- Với \(-1< m< 1\Rightarrow1-m^2< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

Vậy pt đã cho có nghiệm với mọi m

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:26

b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được

c. 

Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)

Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R

\(f\left(2\right)=4-5=-1< 0\)

\(f\left(3\right)=6-5=1>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m

Hay pt đã cho luôn luôn có nghiệm

Nguyễn Thành
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 7:41

\(a,\Leftrightarrow\Delta=\left(-2\right)^2-4\left(2m-1\right)\ge0\\ \Leftrightarrow4-8m+4\ge0\\ \Leftrightarrow8-8m\ge0\Leftrightarrow m\le1\\ b,\Leftrightarrow\Delta=8-8m>0\Leftrightarrow m< 1\\ c,\Leftrightarrow\Delta=8-8m=0\Leftrightarrow m=1\\ d,\Leftrightarrow\Delta=8-8m< 0\Leftrightarrow m>1\)

Rhider
Xem chi tiết
Nguyễn acc 2
7 tháng 1 2022 lúc 15:51

undefined