Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng	Anh
Xem chi tiết
Nguyễn Huy Tú
19 tháng 2 2022 lúc 23:22

\(=2xy-2yz^2+xy+\frac{1}{2}yz^2+2yz^2=3xy+\frac{1}{2}yz^2\)

Khách vãng lai đã xóa
Nguyễn Thu Thủy Ngân
Xem chi tiết
Trần Hoàng	Anh
22 tháng 2 2022 lúc 19:33

kệ mài

Khách vãng lai đã xóa
Vinne
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 9 2021 lúc 8:39

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow yz=-xy-xz\)

Ta có \(x^2+2yz=x^2+yz-xy-xz=\left(x-y\right)\left(x-z\right)\)

Tương tự \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2-2xy=\left(z-x\right)\left(z-y\right)\)

\(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-z\right)\left(y-x\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\\ A=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{-yz\left(y-z\right)+xz\left(y-z\right)+xz\left(x-y\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(y-z\right)\left(xz-yz\right)+\left(x-y\right)\left(xz-xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

 

Minh Hiếu
9 tháng 9 2021 lúc 8:36

⇒yz=−xy−zx⇒yz/x^2+2yz=yz/x^2+yz−xy−zx

=yz/(x−y)(x−z)

Tương tự: xy/z^2+2xy=xy/(x−z)(y−z)

Lấp La Lấp Lánh
9 tháng 9 2021 lúc 8:36

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)

\(\Leftrightarrow yz=-xy-xz\)\(\Leftrightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\)

                    \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 3 2021 lúc 7:31

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

Lê Vũ Hải Yến
Xem chi tiết
Neet
9 tháng 4 2017 lúc 15:17

Áp dụng BĐT cauchy ta có:\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\x^2+z^2\ge2xz\end{matrix}\right.\)

\(P\le\dfrac{1}{4xy+4x+4}+\dfrac{1}{4yz+4y+4}+\dfrac{1}{4xz+4z+4}=\dfrac{1}{4}\left(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+x+1}\right)\)

xét biểu thức \(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{zx+z+1}=\dfrac{1}{xy+x+1}+\dfrac{x}{1+yx+x}+\dfrac{xy}{x+1+xy}=\dfrac{xy+x+1}{xy+x+1}=1\)do đó \(P\le\dfrac{1}{4}\)

dấu = xảy ra khi x=y=z=1

Hung nguyen
10 tháng 4 2017 lúc 8:26

Trước tiên ta tính:

\(\dfrac{1}{x+xy+1}+\dfrac{1}{y+yz+1}+\dfrac{1}{z+zx+1}\)

Đặt: \(\left\{{}\begin{matrix}x=\dfrac{a}{b}\\y=\dfrac{b}{c}\\z=\dfrac{c}{a}\end{matrix}\right.\left(a,b,c\ne0\right)\)

Thì ta có: \(\dfrac{1}{\dfrac{a}{b}+\dfrac{a}{b}.\dfrac{b}{c}+1}+\dfrac{1}{\dfrac{b}{c}+\dfrac{b}{c}.\dfrac{c}{a}+1}+\dfrac{1}{\dfrac{c}{a}+\dfrac{c}{a}.\dfrac{a}{b}+1}\)

\(=\dfrac{bc}{ab+ac+bc}+\dfrac{ca}{ab+bc+ca}+\dfrac{ab}{ab+bc+ca}=1\)

Quay về bài toán ban đầu. Ta có:

\(P=\dfrac{1}{\left(x+2\right)^2+y^2+2xy}+\dfrac{1}{\left(y+2\right)^2+z^2+2yz}+\dfrac{1}{\left(z+2\right)^2+x^2+2xz}\)

\(=\dfrac{1}{x^2+4x+4+y^2+2xy}+\dfrac{1}{y^2+4y+4+z^2+2yz}+\dfrac{1}{z^2+4z+4+z^2+2xz}\)

\(=\dfrac{1}{\left(x-y\right)^2+4x+4xy+4}+\dfrac{1}{\left(y-z\right)^2+4y+4yz+4}+\dfrac{1}{\left(z-x\right)^2+4z+4zx+4}\)

\(\le\dfrac{1}{4x+4xy+4}+\dfrac{1}{4y+4yz+4}+\dfrac{1}{4z+4zx+4}\)

\(=\dfrac{1}{4}.\left(\dfrac{1}{x+xy+1}+\dfrac{1}{y+yz+1}+\dfrac{1}{z+zx+1}\right)=\dfrac{1}{4}\)

Ngọc Thảo
Xem chi tiết
nguyen thi vang
6 tháng 1 2018 lúc 19:21

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

Phoenix_Alone
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
Cold Wind
20 tháng 7 2017 lúc 7:41

1, đa thức đã cho \(\Leftrightarrow\left(2x-y\right)^2-2\left(2x-y\right)\left(x-y\right)+\left(x-y\right)^2=\left[\left(2x-y\right)-\left(x-y\right)\right]^2=\left(2x-y-x+y\right)^2=x^2\)

2, đa thức đã cho \(\Leftrightarrow\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

--- giải chi tiết lắm rồi đó---

Đức Hiếu
20 tháng 7 2017 lúc 7:45

a, \(\left(2x-y\right)^2+2\left(2x-y\right)\left(y-x\right)+\left(x-y\right)^2\)

\(=4x^2-4xy+y^2+2\left(2xy-2x^2-y^2+xy\right)+x^2-2xy+y^2\)

\(=4x^2-4xy+y^2+4xy-4x^2-2y^2+2xy+x^2-2xy+y^2\)

\(=x^2\)

b, \(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z\right)\left[1+2\left(y-z\right)\right]+y^2-2yz+z^2\)

\(=\left(x-y+z\right)\left(1+2y-2z\right)+y^2-2yz+z^2\)

\(=x+2xy-2xz-y-2y^2+2yz+z+2yz-2z^2+y^2-2yz+z^2\)

\(=x-y+z+2xy-2xz+2yz-y^2-z^2\)

Chúc bạn học tốt!!!

Takanashi Hikari
Xem chi tiết
Thịnh Gia Vân
19 tháng 12 2020 lúc 20:13

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)