Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang An Minh
Xem chi tiết
Tiên Tiên
25 tháng 3 2019 lúc 22:06
https://i.imgur.com/TqWdpam.png
Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2022 lúc 23:08

a: TH1: m=-3

Pt sẽ là \(-3x+\left(-3+2\right)\left(-3+4\right)=0\)

=>-3x-1=0

hay x=-1/3(loại)

TH2: m<>-3

Để pt có hai nghiệm trái dấu thì (m+2)(m+4)(m+3)<0

=>m<-4 hoặc -3<m<-2

b: \(\text{Δ}=9\left(m+2\right)^2-4\left(m+3\right)\left(m+2\right)\left(m+4\right)\)

\(=\left(m+2\right)\left[9m+18-4\left(m^2+7m+12\right)\right]\)

\(=\left(m+2\right)\left(9m+18-4m^2-28m-48\right)\)

\(=\left(m+2\right)\left(-4m^2-19m-30\right)\)

Để phương trình có hai nghiệm thì Δ>=0

\(\Leftrightarrow\left(m+2\right)\left(4m^2+19m+30\right)< =0\)

=>m+2<=0

hay m<=-2

Mỹ Nguyễn Quang
Xem chi tiết
tran duc huy
Xem chi tiết
Bi Bi
Xem chi tiết
phạm nguyễn phương linh
7 tháng 3 2019 lúc 19:19

jungkook! chồng tui!!

Miya Kyubi
Xem chi tiết
Phí Đức
26 tháng 4 2021 lúc 20:03

\(\Delta =1^2-4.1.m=1-4m\)

Pt có nghiệm kép

\(\to \Delta=0\\\to 1-4m=0\\\leftrightarrow m=\dfrac{1}{4}\)

Pt có 2 nghiệm phân biệt

\(\to \Delta>0\\\to 1-4m>0\\\leftrightarrow m<\dfrac{1}{4}\)

Pt vô nghiệm

\(\to \Delta<0\\\to 1-4m<0\\\leftrightarrow m>\dfrac{1}{4}\)

Thanh Tâm
Xem chi tiết
Chibi
13 tháng 3 2017 lúc 8:34

Ta có x1x2 = -1

=> x1 = -\(\frac{1}{x_2}\)

=> x1 - x2 = x1\(\frac{1}{x_1}\)

x1 > 0 thì

x1 + \(\frac{1}{x_1}\) >= 2\(\sqrt{x_1\frac{1}{x_1}}\)= 2

x1 < 0 thì

x1 + \(\frac{1}{x_1}\) <= -2\(\sqrt{x_1\frac{1}{x_1}}\)= -2

Vậy: |x1-x2| >= 2

Vũ Như Mai
15 tháng 3 2017 lúc 20:18

Trước khi làm hình như phải cm pt có nghiệm?

( a = 1, b = -m, c = -1)

\(\Delta=b^2-4ac\)

   \(=\left(-m\right)^2-4.1.\left(-1\right)\)

    \(=m^2+4>0\forall m\)

Vậy pt luôn có 2 nghiệm pb với mọi m

thang
18 tháng 3 2017 lúc 20:53

đenta = m^2 +4 >= 4 >0 với mọi m

=> pt luôn có 2 ng x(1) ; x(2)

theo hệ thức Vi-Et có ; x1 + x2 =m và x1 x2 =-1  (1)

Ta có : |x1 -x2|>=2  <=>  (x1 -x2 ) ^2  >=4  <=> x1 ^2 -2x1 x2 + x2 ^2  .=4 <=>  (x1 +x2)^2 -4x1 x2 >=4    (2)

thay (2) vào (1) có :  m^2 +4 >=4 

vì m^2 >=0 Vmọi m =>  m^2 + 4 >=4 Vmọi m hay |x1 -x2 | >= 2 Vmọi m ==>> dpcm  :)

Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2022 lúc 11:56

a: \(\text{Δ}=\left(m+5\right)^2-4\left(3m+6\right)\)

\(=m^2+10m+25-12m-24=\left(m-1\right)^2>=0\)

=>Phương trình luôn có hai nghiệm

b: Theo đề, ta có: \(x_1^2+x_2^2=25\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)-25=0\)

\(\Leftrightarrow m^2+10m+25-25-6m-12=0\)

=>m^2-4m-12=0

=>m=6 hoặc m=-2

Phạm Dương Ngọc Nhi
Xem chi tiết
Akai Haruma
24 tháng 12 2018 lúc 20:06

Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)

Ta có:

\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)

\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)

\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)

\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)

Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)

\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)

Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)

Vậy $x=2$ là nghiệm duy nhất của pt đã cho.

Akai Haruma
24 tháng 12 2018 lúc 20:27

Bài 2:

Với mọi $x,y,z$ nguyên không âm thì :

\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)

Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn

\(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$

Vậy $x=0$

Khi đó ta có: \(1+2013^y=2014^z\)

Nếu $z=1$ thì dễ thu được $y=1$

Nếu $z>1$:

Ta có: \(2014^z\vdots 4(1)\)

\(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)

Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))

Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)

Akai Haruma
24 tháng 12 2018 lúc 20:52

Bài 3:

a)

Xét \(\Delta=(m+n)^2-4(m+1)=m^2+2m(n-2)+(n-2)(n+2)\)

\(=m^2+(n-2)(2m+n+2)\)

PT có nghiệm nguyên khi và chỉ khi $\Delta$ là số chính phương.

\(\Delta=m^2+(n-2)(2m+n+2)\) là scp với mọi số nguyên $m$ khi và chỉ khi $n=2$

Do đó luôn có giá trị $n=2$ không đổi để pt đã cho có nghiệm nguyên với mọi số nguyên $m$.

b) Với $m\neq -1$ thì dễ thấy $x=0$ không phải nghiệm của pt

Theo hệ thức Vi-et, với $x_1,x_2$ là hai nghiệm nguyên của pt thì:

\(\left\{\begin{matrix} x_1+x_2=-(m+n)\\ x_1x_2=m+1\end{matrix}\right.\)

\(\Rightarrow (m+n)^2+m^2=(x_1+x_2)^2+(x_1x_2-1)^2=x_1^2+x_2^2+x_1^2x_2^2+1=(x_1^2+1)(x_2^2+1)\) là hợp số với mọi $x_i\neq 0$

Do đó ta có đpcm.