Bài 4: Cho hình vuông cạnh a , tâm O . Gọi S là một điểm ở ngoài mặt phẳng (ABCD) sao cho SB = SD. Gọi M là điểm tùy ý trên AO với AM = x . mặt phẳng (a) qua M song song với SA và BD cắt SO , SB , AB tại N, P , Q .
Tứ giác MNPQ là hình gì ? Cho SA = a . Tính diện tích MNPQ theo a và x . Tính x để diện tích lớn nhấtgiải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
1.Giải phương trinh : \(tan^22x.tan^23x.tan5x=tan^22x-tan3x+tan5x\)
2.Cho hình chữ nhật ABCD . Trên tia đối của tia AB lấy P , trên tia đối tia CD lấy Q. Hãy xác định một điểm M trên cạnh BC và một điểm N trên cạnh AD sao cho MN // CD và tổng PN+QM nhỏ nhất