Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Dương Ngọc Nhi

Bài 1. Giải phương trình :
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)

Bài 2. Tìm tất cả các bộ 3 số nguyên không âm (x ; y; z) thoả mãn đẳng thức :
\(2012^x+2013^y=2014^z\)

Bài 3. Cho phương trình bậc hai : \(x^2+\left(m+n\right)+m+1=0\) với m và n là các số nguyên trong đó \(m\ne1\).
a) Chứng minh rằng : Với mọi giá trị của m, luôn có 1 giá trị của n không đổi để phương trình đã cho có nghiệm x nguyên.
b) Chứng minh rằng : Khi phương trình đã cho có hai nghiệm nguyên thì \(\left(m+n\right)^2+m^2\) là hợp số.

HELP MEEEEEEEEEEEEEEEE !!! PLEASE !!!

Akai Haruma
24 tháng 12 2018 lúc 20:06

Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)

Ta có:

\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)

\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)

\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)

\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)

Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)

\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)

Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)

Vậy $x=2$ là nghiệm duy nhất của pt đã cho.

Akai Haruma
24 tháng 12 2018 lúc 20:27

Bài 2:

Với mọi $x,y,z$ nguyên không âm thì :

\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)

Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn

\(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$

Vậy $x=0$

Khi đó ta có: \(1+2013^y=2014^z\)

Nếu $z=1$ thì dễ thu được $y=1$

Nếu $z>1$:

Ta có: \(2014^z\vdots 4(1)\)

\(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)

Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))

Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)

Akai Haruma
24 tháng 12 2018 lúc 20:52

Bài 3:

a)

Xét \(\Delta=(m+n)^2-4(m+1)=m^2+2m(n-2)+(n-2)(n+2)\)

\(=m^2+(n-2)(2m+n+2)\)

PT có nghiệm nguyên khi và chỉ khi $\Delta$ là số chính phương.

\(\Delta=m^2+(n-2)(2m+n+2)\) là scp với mọi số nguyên $m$ khi và chỉ khi $n=2$

Do đó luôn có giá trị $n=2$ không đổi để pt đã cho có nghiệm nguyên với mọi số nguyên $m$.

b) Với $m\neq -1$ thì dễ thấy $x=0$ không phải nghiệm của pt

Theo hệ thức Vi-et, với $x_1,x_2$ là hai nghiệm nguyên của pt thì:

\(\left\{\begin{matrix} x_1+x_2=-(m+n)\\ x_1x_2=m+1\end{matrix}\right.\)

\(\Rightarrow (m+n)^2+m^2=(x_1+x_2)^2+(x_1x_2-1)^2=x_1^2+x_2^2+x_1^2x_2^2+1=(x_1^2+1)(x_2^2+1)\) là hợp số với mọi $x_i\neq 0$

Do đó ta có đpcm.


Các câu hỏi tương tự
Ngọc
Xem chi tiết
TRANPHUTHUANTH
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Trần Đặng Hạ Quỳnh
Xem chi tiết
Trương  quang huy hoàng
Xem chi tiết
nguyen ngoc son
Xem chi tiết
TRANPHUTHUANTH
Xem chi tiết
Nguyễn Hoàng Đăng Khoa
Xem chi tiết
Trang
Xem chi tiết