Cho parapol (P) : y = x2 và đường thẳng (d) : y = ax + 2 ( a là tham số ) .
1, Với a = 2 hãy tìm tọa độ giao điểm của (d) và (P)
2, chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B với mọi giá trị của a
3, Gọi x1 ; x2 lần lượt là hoành độ của A và B . Tìm giá trị của a để biểu thức N = x12 + ( x1 + 2 )(x2 + 2 ) + x22 có giá trị nhỏ nhất .
Mn ơi giải giúp em phần b, c ak !
a) Giải phương trình hoành độ giao điểm với a=2 ta đc
\(x^2-2x-2=0\)
\(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)
với x=...