Cho a,b,c,d là các số thực thoả mãn: b+d ≠ 0 và \(\frac{ac}{b+d}\) ≥ 2
Chứng minh rằng phương trình \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=0\) (x là ẩn) luôn có nghiệm.
Bài 1. Giải phương trình :
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
Bài 2. Tìm tất cả các bộ 3 số nguyên không âm (x ; y; z) thoả mãn đẳng thức :
\(2012^x+2013^y=2014^z\)
Bài 3. Cho phương trình bậc hai : \(x^2+\left(m+n\right)+m+1=0\) với m và n là các số nguyên trong đó \(m\ne1\).
a) Chứng minh rằng : Với mọi giá trị của m, luôn có 1 giá trị của n không đổi để phương trình đã cho có nghiệm x nguyên.
b) Chứng minh rằng : Khi phương trình đã cho có hai nghiệm nguyên thì \(\left(m+n\right)^2+m^2\) là hợp số.
HELP MEEEEEEEEEEEEEEEE !!! PLEASE !!!
Cho các số a,b, c,x,y,z là các số dương thoả mãn ax + by + cz = xyz
Chứng minh rằng : \(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Cho x, y , z là các số thực dương thoả mãn \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}=1\)
Chứng minh rằng \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
1. Cho x, y là các số hữu tỉ thoả mãn \(x^2+y^2+\left(\dfrac{xy+1}{x+y}\right)^2=2\).
Chứng minh rằng \(\sqrt{1+xy}\) là 1 số hữu tỉ .
2. Tìm tất cả các bộ ba số nguyên dương (x, y, z) thoả mãn \(\dfrac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\) là số hữu tỉ đồng thời \(x^2+y^2+z^2\) là số nguyên tố.
Giải phương trình:
a) \(2\left(1-x\right)\sqrt{2x^2+2x-1}=x^2-x+1\)
b) \(\sqrt{x-1}+x-1=\sqrt{2\left(x-3\right)^2+2x-2}\)
c) \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
d) \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
Gọi \(a,b,c,d\) là các số thực thỏa mãn: \(b+d\ne0\) và \(\frac{ac}{b+d}\ge2\)
Chứng minh phương trình \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=0\) (x là ẩn) luôn có nghiệm
Câu 1: Tìm n để cặp số (2;1) là nghiệm của hệ phương trình\(\left\{{}\begin{matrix}2n+y=5\\nx+3y=14\end{matrix}\right.\)
Câu 2:Tính: \(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)
Câu 3:Tìm m và n để hệ phương trình:\(\left\{{}\begin{matrix}mx+y=3\\nx+my=-2\end{matrix}\right.\)nhận cặp số (-2;1) là nghiệm
Câu 4: Cho tam giác ABC biết độ dài cạnh AB=18cm ; AC=24cm; BC=30cm. Chứng minh BC là tiếp tuyến của đường tròn (A;14,4cm)
Câu 5:Cho tam giác ABC nhọn , đường cao AH. Vẽ các đường tròn đường kính HB, HC lần lượt cắt AB, AC tại M và N. Chứng minh rằng: AM.AB=AN.AC
Câu 6: Cho tam giác ABC, vẽ đường cao AH ( điểm H nằm giữa hai điểm B và C). Biết \(AH^2=HB.HC\). Chứng minh đường thẳng AC là tiếp tuyến của đường tròn tâm B bán kính BA.
Câu 7:Cho đường thẳng (d) y=(m-5)x+7 (m là tham số) và điểm A (2;4). Biết đường thẳng (d) song song với đường thẳng OA(với O là gốc tọa độ). Tìm giá trị m
Cho 3 số dương a,b , c thoả mãn \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}v̀aa+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\)
Chứng minh rằng; \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)