giải hpt: \(\left\{{}\begin{matrix}x+y=8\\\sqrt{x^2+9}+\sqrt{y^2+9}+10\end{matrix}\right.\)
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
Câu 1: ĐK: $x\geq 1$
Xét PT(1):
\(x^2+xy(2y-1)=2y^3-2y^2-x\)
\(\Leftrightarrow x^2-xy+x+(2xy^2-2y^3+2y^2)=0\)
\(\Leftrightarrow x(x-y+1)+2y^2(x-y+1)=0\)
\(\Leftrightarrow (x-y+1)(x+2y^2)=0\)
\(\Rightarrow \left[\begin{matrix} y=x+1\\ 2y^2=-x\end{matrix}\right.\)
Nếu $y=x+1$, thay vào PT(2):
$\Rightarrow 6\sqrt{x-1}+x+8=4x^2$
$\Leftrightarrow 4(x^2-4)-6(\sqrt{x-1}-1)-(x-2)=0$
\(\Leftrightarrow 4(x-2)(x+2)-6.\frac{x-2}{\sqrt{x-1}+1}-(x-2)=0\)
\(\Leftrightarrow (x-2)\left[4(x+2)-\frac{6}{\sqrt{x-1}+1}-1\right]=0\)
Với mọi $x\geq 1$ dễ thấy:
$4(x+2)\geq 12$
\(\frac{6}{\sqrt{x-1}+1}+1\leq 6+1=7\)
Suy ra biểu thức trong ngoặc vuông lớn hơn $0$
$\Rightarrow x-2=0\Rightarrow x=2$ (thỏa mãn)
$\Rightarrow y=x+1=3$
Nếu $2y^2=-x\Rightarrow -x\geq 0\Rightarrow x\leq 0$ (vô lý do $x\geq 1$)
Vậy $(x,y)=(2,3)$
Câu 2:
Nếu như bạn nói những bài toán này được giải theo kiểu đưa về phân tích thành nhân tử thì đề bài của bạn có lẽ sai vì không pt nào trong câu này đưa được về dạng tích. Mình thấy PT(1) có lẽ cần sửa lại thành:
\(x\sqrt{x^2+y}+y=\sqrt{x^4+x^3}+x\)
ĐKXĐ: $x\geq 1; y\geq 0$
Với $x\geq 1; y\geq 0$. Xét PT(1):
\(\Leftrightarrow (x\sqrt{x^2+1}-\sqrt{x^4+x^3})+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(x^2+y)-(x^4+x^3)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(y-x)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow (y-x)\left[\frac{x^2}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+1\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq 1; y\geq 0$ nên $y-x=0\Rightarrow y=x$
Thay vào PT(2):
$x+\sqrt{x}+\sqrt{x-1}+\sqrt{x(x-1)}=\frac{9}{2}$
\(\Leftrightarrow 2x+2\sqrt{x}+2\sqrt{x-1}+2\sqrt{x(x-1)}-9=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1})^2+2(\sqrt{x}+\sqrt{x-1})-8=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1}-2)(\sqrt{x}+\sqrt{x-1}+4)=0\)
Dễ thấy \(\sqrt{x}+\sqrt{x-1}+4>0\) nên $\sqrt{x}+\sqrt{x-1}=2$
$\Rightarrow 2x-1+2\sqrt{x(x-1)}=4$
$\Leftrightarrow 5-2x=2\sqrt{x(x-1)}$
Tiếp tục bình phương kết hợp với điều kiện $x\leq \frac{5}{2}$ ta tìm được $x=\frac{25}{16}$
Vậy $x=y=\frac{25}{16}$
Câu 2:
Nếu như bạn nói những bài toán này được giải theo kiểu đưa về phân tích thành nhân tử thì đề bài của bạn có lẽ sai vì không pt nào trong câu này đưa được về dạng tích. Mình thấy PT(1) có lẽ cần sửa lại thành:
\(x\sqrt{x^2+y}+y=\sqrt{x^4+x^3}+x\)
ĐKXĐ: $x\geq 1; y\geq 0$
Với $x\geq 1; y\geq 0$. Xét PT(1):
\(\Leftrightarrow (x\sqrt{x^2+1}-\sqrt{x^4+x^3})+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(x^2+y)-(x^4+x^3)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow \frac{x^2(y-x)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)
\(\Leftrightarrow (y-x)\left[\frac{x^2}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+1\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq 1; y\geq 0$ nên $y-x=0\Rightarrow y=x$
Thay vào PT(2):
$x+\sqrt{x}+\sqrt{x-1}+\sqrt{x(x-1)}=\frac{9}{2}$
\(\Leftrightarrow 2x+2\sqrt{x}+2\sqrt{x-1}+2\sqrt{x(x-1)}-9=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1})^2+2(\sqrt{x}+\sqrt{x-1})-8=0\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1}-2)(\sqrt{x}+\sqrt{x-1}+4)=0\)
Dễ thấy \(\sqrt{x}+\sqrt{x-1}+4>0\) nên $\sqrt{x}+\sqrt{x-1}=2$
$\Rightarrow 2x-1+2\sqrt{x(x-1)}=4$
$\Leftrightarrow 5-2x=2\sqrt{x(x-1)}$
Tiếp tục bình phương kết hợp với điều kiện $x\leq \frac{5}{2}$ ta tìm được $x=\frac{25}{16}$
Vậy $x=y=\frac{25}{16}$
giải hpt:
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+x+1=3y\\y^2+y+1=3x\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
c)\(\left\{{}\begin{matrix}x^2+x+1=3y\\y^2+y+1=3x\end{matrix}\right.\)
Trừ vế đối vế hai phương trình, ta được:
\(x^2+x+1-y^2-y-1=3y-3x\\ \Leftrightarrow x^2-y^2+4x+4y=0\\ \Leftrightarrow\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x+y+4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x+y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=-x-4\end{matrix}\right.\)
+Với x=y thế vào \(x^2+x+1=3y\) ta được
\(x^2+x+1=3x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Do đó (x;y)=(1;1) là một nghiệm của hệ phương trình đã cho.
+Với y=-x-4 thế vào \(x^2+x+1=3y\) ta được
\(x^2+x+1=3\left(-x-4\right)\Leftrightarrow x^2+4x+13=0\Leftrightarrow\left(x+2\right)^2+9=0\)(*)
Mặt khác \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+9\ge0\Rightarrow\left(x+2\right)^2\ge-9>0\), do đó phương trình (*) vô nghiệm
Vậy (x;y)=(1;1) là nghiệm duy nhất của hệ phương trình đã cho.
Giải hpt: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=9\\\sqrt[3]{x}+\sqrt[3]{y}=5\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2\sqrt{xy}=81\\x+y+3\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)=125\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y+2\sqrt{xy}=81\\x+y+15\sqrt[3]{xy}=125\end{matrix}\right.\)
Đặt \(\sqrt[6]{xy}=t>0\Rightarrow\left\{{}\begin{matrix}x+y+2t^3=81\\x+y+15t^2=125\end{matrix}\right.\)
\(\Rightarrow2t^3-15t^2+44=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\dfrac{11+3\sqrt{33}}{4}\\t=\dfrac{11-3\sqrt{33}}{4}< 0\left(l\right)\end{matrix}\right.\)
\(t=\dfrac{11+3\sqrt{33}}{4}\Rightarrow x+y=81-2t^3< 0\) (loại)
\(t=2\Rightarrow\left\{{}\begin{matrix}xy=t^6=64\\x+y=81-2t^3=65\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy=64\\y=65-x\end{matrix}\right.\)
\(\Rightarrow x\left(65-x\right)=64\Rightarrow x^2-65x+64=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=64\\x=64\Rightarrow y=1\end{matrix}\right.\)
Vậy nghiệm của hệ đã cho là \(\left(x;y\right)=\left(64;1\right);\left(1;64\right)\)
Nếu bạn gặp khó với dấu căn, nếu căn thức làm bạn hoang mang, không sao. Hãy giải hệ đối xứng loại 1 sau đây: \(\left\{{}\begin{matrix}a^3+b^3=9\\a^2+b^2=5\end{matrix}\right.\) Với \(a=\sqrt[6]{x};b=\sqrt[6]{y}\)
Giải hpt : a) \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2+6xy-\frac{1}{\left(x-y\right)^2}+\frac{9}{8}=0\\2y-\frac{1}{x-y}+\frac{5}{4}=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{x}{x^2-y}+\frac{5y}{x+y^2}=4\\5x+y+\frac{x^2-5y^2}{xy}=5\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}3xy+y+1=21x\\9x^2y^2+3xy+1=117x^2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=1\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
Giải HPT\(\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\3\sqrt{4x-12}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\)
a) Tìm ĐKXĐ
b) Giải HPT
\(\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\3\sqrt{4x-12}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\) \(Đkxđ:\left\{{}\begin{matrix}x\ge3\\y\ne2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\6\sqrt{x-3}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\)
Đặt: \(\left\{{}\begin{matrix}2\sqrt{x-3}=a\left(a>0\right)\\\frac{3}{2x-y}=b\end{matrix}\right.\)
Ta được phương trình mới:
\(\left\{{}\begin{matrix}a-4b=8\\3a+b=\frac{9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}=2\\\frac{3}{2x-y}=-\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=1\\2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=10\end{matrix}\right.\)
Vậy ..........
giải hpt: a,\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y=5+\sqrt{\left(x-1\right)\left(y-1\right)}\\\sqrt{x-1}+\sqrt{y-1}=3\end{matrix}\right.\)
a.
ĐKXĐ: \(x;y\ge-1;xy\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)
b.
ĐKXĐ: \(x;y\ge1\)
Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)
\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)
Thế vào pt đầu:
\(x+y=5+\dfrac{11-x-y}{2}\)
\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)
Thế xuống pt dưới:
\(\sqrt{x-1}+\sqrt{6-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)
\(\Leftrightarrow...\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x+y=8\\\sqrt{x^2+9}+\sqrt{y^2+9}=10\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x+y=8\\\sqrt{x^2+9}+\sqrt{y^2+9}=10\end{matrix}\right.\)