Cho a > 0. Chứng minh:
\(a+\dfrac{1}{a}\ge2\)
Cho \(ab>0.\) Chứng minh \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Nhân 2 vế cho ab ta có:
`a^2+b^2>=2ab`
`<=>(a-b)^2>=0` luôn đúng
Dấu "=" `<=>a=b`
Cho a>0. Chứng minh \(a+\dfrac{1}{a}\ge2\)
Áp dụng bất đẳng thức AM - GM ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)
Dấu " = " khi a = 1
Vậy...
Áp dụng bất đẳng thức AM-MG ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)
Dấu "=" sảy ra khi và chỉ khi \(a=1\)
Vậy \(a+\dfrac{1}{a}\ge2\) (đpcm)
Chúc bạn học tốt!!!
Cho a>0,b>0,c>0. Chứng minh \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}\sqrt{\dfrac{c}{a+b}}\ge2\)
*Cách khác
Khá căn bản thôi áp dụng BĐt cosi với 2 số dương
`=>a+(b+c)>=2sqrt{a(b+c)}`
`=>a/(2sqrt{a(b+c)})>=a/(a+b+c)`
`<=>sqrt{a/(b+c)}>=(2a)/(a+b+c)`
CMTT:
`sqrt{b/(c+a)}>=(2b)/(a+b+c)`
`sqrt{c/(a+b)}>=(2c)/(a+b+c)`
`=>sqrt{a/(b+c)}+sqrt{b/(c+a)}+sqrt{c/(a+b)}>=2`
Dấu "=" `<=>a=b=c=0` vô lý vì `a,b,c>0`
Cho a > 0. Chứng minh rằng : \(a+\dfrac{1}{a}\ge2\)
Áp dụng bất đẳng thức AM - GM ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)
Dấu " = " xảy ra khi \(a=1\)
\(\Rightarrowđpcm\)
Áp dụng bất đẳng thức AM-GM ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)
Dấu "=" sảy ra khi và chỉ khi \(a=1\)
Vậy \(a+\dfrac{1}{a}\ge2\) (đpcm)
Chúc bạn học tốt!!!
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
\(\dfrac{a}{\sqrt{b^3+1}}=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\ge\dfrac{2a}{b+1+b^2-b+1}=\dfrac{2a}{b^2+2}\)
Tương tự và cộng lại:
\(VT\ge\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}=a-\dfrac{ab^2}{b^2+2}+b-\dfrac{bc^2}{c^2+2}+c-\dfrac{ca^2}{a^2+2}\)
\(VT\ge6-\left(\dfrac{ab^2}{b^2+2}+\dfrac{bc^2}{c^2+2}+\dfrac{ca^2}{c^2+2}\right)\)
Ta có:
\(\dfrac{ab^2}{b^2+2}=\dfrac{2ab^2}{2b^2+4}=\dfrac{2ab^2}{b^2+b^2+4}\le\dfrac{2ab^2}{3\sqrt[3]{4b^4}}=\dfrac{a}{3}\sqrt[3]{2b^2}=\dfrac{a}{3}\sqrt[3]{2.b.b}\le\dfrac{a}{9}\left(2+b+b\right)\)
Tương tự và cộng lại:
\(VT\ge6-\left(\dfrac{2a}{9}\left(b+1\right)+\dfrac{2b}{9}\left(c+1\right)+\dfrac{2c}{9}\left(a+1\right)\right)\)
\(=6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{9}\left(ab+bc+ca\right)\ge6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{27}\left(a+b+c\right)^2=2\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a>b>0 và ab=1. Chứng minh rằng: \(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Áp dụng giả thiết \(ab=1\) và bất đẳng thức Cauchy ta có:
\(\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=a-b+\dfrac{2}{a-b}\ge2\sqrt{\dfrac{2\left(a-b\right)}{a-b}}=2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab=1\\a-b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
Cho \(a-b>0\) và \(ab=1\).Chứng minh rằng:\(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Lời giải:
Áp dụng BĐT Cô-si ta có:
$\frac{a^2+b^2}{a-b}=\frac{(a-b)^2+2ab}{a-b}=\frac{(a-b)^2+2}{a-b}=(a-b)+\frac{2}{a-b}\geq 2\sqrt{(a-b).\frac{2}{a-b}}=2\sqrt{2}$
Ta có đpcm.
Chứng minh rằng \(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)vớia,b,c>0\)
Giups mình với !!!!!!!!!!!!!!!!!!!!!!
\(\dfrac{a}{bc}+\dfrac{b}{ac}>=2\cdot\sqrt{\dfrac{a}{bc}\cdot\dfrac{b}{ac}}=\dfrac{2}{cc}\)
\(\dfrac{b}{ca}+\dfrac{c}{ab}>=2\cdot\sqrt{\dfrac{bc}{ca\cdot ab}}=\dfrac{2}{a}\)
\(\dfrac{c}{ab}+\dfrac{a}{bc}>=2\cdot\sqrt{\dfrac{a\cdot c}{a\cdot b\cdot c\cdot b}}=\dfrac{2}{b}\)
=>a/bc+b/ac+c/ab>=2(1/a+1/b+1/c)
chứng minh \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\sqrt{\dfrac{2c}{a+b}}\ge2\) với mọi a,b,c >0
Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\sqrt{\dfrac{2c}{a+b}}\)
\(=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{2c}{\sqrt{2c\left(a+b\right)}}\)
\(\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b+2c}=\dfrac{\left(a-b\right)^2\left(a+b+c\right)}{\left(b+c\right)\left(c+a\right)\left(a+b+2c\right)}\ge0\)
(đúng hiển nhiên)
Đẳng thức xảy ra khi $a=b=c.$