Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\sqrt{\dfrac{2c}{a+b}}\)
\(=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{2c}{\sqrt{2c\left(a+b\right)}}\)
\(\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b+2c}=\dfrac{\left(a-b\right)^2\left(a+b+c\right)}{\left(b+c\right)\left(c+a\right)\left(a+b+2c\right)}\ge0\)
(đúng hiển nhiên)
Đẳng thức xảy ra khi $a=b=c.$