§1. Đại cương về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Ánh Dương

cho ba số thực dương a,b,c tìm giá trị nhỏ nhất của biểu thức P= \(\dfrac{a^2+b^2+c^2}{2}+\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\)

Nguyễn Việt Lâm
21 tháng 3 2022 lúc 19:47

Ta có:

\(\dfrac{a}{bc}+\dfrac{b}{ca}\ge2\sqrt{\dfrac{ab}{abc^2}}=\dfrac{2}{c}\)

Tương tự: \(\dfrac{a}{bc}+\dfrac{c}{ab}\ge\dfrac{2}{b}\) ; \(\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{2}{a}\)

Cộng vế với vế: \(\Rightarrow\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{a^2+b^2+c^2}{2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a^2+\dfrac{1}{a}+\dfrac{1}{a}\right)+\dfrac{1}{2}\left(a^2+\dfrac{1}{b}+\dfrac{1}{b}\right)+\dfrac{1}{2}\left(c^2+\dfrac{1}{c}+\dfrac{1}{c}\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}.3\sqrt[3]{\dfrac{a^2}{a^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{b^2}{b^2}}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{c^2}{c^2}}=\dfrac{9}{2}\)

\(P_{min}=\dfrac{9}{2}\) khi \(a=b=c=1\)


Các câu hỏi tương tự
Nguyễn Thị Minh Hường
Xem chi tiết
starb hyps
Xem chi tiết
phan thế mạnh
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
Anh Thơ Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
vung nguyen thi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết